Next: False position or Regula Up: Main Previous: Numerical Analysis
(a) Bisection Method:
This is one of the simplest and reliable iterative methods for the
solution of nonlinear equation. This method is also known as
binary chopping or half-interval method. Given a function
which is real and continuous in an interval and and
are of opposite sign i.e.
, then there is at
least one real root
of .
Algorithm:
Given a function continuous on a interval
satisfying the Bisection method starting criteria, carry out the
following steps to find a root of
(1) Set
(2) For n=1,2,...until satisfied do
(a) If
(b)If
otherwise
Note:
1) The subscripts in
etc denote the iteration number.
is the interval for the zeroth or starting
iteration.
is the interval for the n
iteration.
(2) An iterative process must be terminated at some stage. 'Until satisfied' refers to the solution convergence criteria used for stopping the execution process. We must have an objective criteria for deciding when to stop the process.We may use one of the following criteria depending on the behavior of the function (monotonous/steep variation/increasing /decreasing)
(i)
(Tolerable absolute error in
(ii)
(Tolerable relative
error in
(iii)
(Value of
function as
)
(iv)
(difference in two
consecutive iteration function values)
Usually
are
referred to as tolerance values and it is fixed by us depending on
the level of accuracy we desire to have on the solution. For
example
etc.
Example:
Solve
for the root in the
interval [1,2] by Bisection method.
Solution: Given
on
There is a root for the given function in [1,2].
Set
Set
and
Set
Details of the remaining steps
are provided in the table below:
Bisection Method | ||||
---|---|---|---|---|
Iteration no. | ||||
0 | 1.0000000000 | 2.0000000000 | 1.5000000000 | -2.0000000000 |
1 | 1.5000000000 | 2.0000000000 | 1.7500000000 | 1.3437500000 |
2 | 1.5000000000 | 1.7500000000 | 1.6250000000 | -0.4804687500 |
3 | 1.6250000000 | 1.7500000000 | 1.6875000000 | 0.3920898438 |
4 | 1.6250000000 | 1.6875000000 | 1.6562500000 | -0.0538940430 |
5 | 1.6562500000 | 1.6875000000 | 1.6718750000 | 0.1666488647 |
6 | 1.6562500000 | 1.6718750000 | 1.6640625000 | 0.0557680130 |
7 | 1.6562500000 | 1.6640625000 | 1.6601562500 | 0.0007849932 |
8 | 1.6562500000 | 1.6601562500 | 1.6582031250 | -0.0265924782 |
9 | 1.6582031250 | 1.6601562500 | 1.6591796875 | -0.0129132364 |
10 | 1.6591796875 | 1.6601562500 | 1.6596679688 | -0.0060664956 |
11 | 1.6596679688 | 1.6601562500 | 1.6599121094 | -0.0026413449 |
12 | 1.6599121094 | 1.6601562500 | 1.6600341797 | -0.0009283243 |
13 | 1.6600341797 | 1.6601562500 | 1.6600952148 | -0.0000717027 |
14 | 1.6600952148 | 1.6601562500 | 1.6601257324 | 0.0003566360 |
15 | 1.6600952148 | 1.6601257324 | 1.6601104736 | 0.0001424643 |
16 | 1.6600952148 | 1.6601104736 | 1.6601028442 | 0.0000353802 |
17 | 1.6600952148 | 1.6601028442 | 1.6600990295 | -0.0000181614 |
18 | 1.6600990295 | 1.6601028442 | 1.6601009369 | 0.0000086094 |
Example:
Solve
for the root
in
the interval by Bisection method.
Bisection Method | ||||
---|---|---|---|---|
Iteration no. | ||||
0 | 0.5000000000 | 1.5000000000 | 1.0000000000 | 3.1720056534 |
1 | 0.5000000000 | 1.0000000000 | 0.7500000000 | 0.6454265714 |
2 | 0.5000000000 | 0.7500000000 | 0.6250000000 | -1.0943561792 |
3 | 0.6250000000 | 0.7500000000 | 0.6875000000 | -0.1919542551 |
4 | 0.6875000000 | 0.7500000000 | 0.7187500000 | 0.2357951254 |
5 | 0.6875000000 | 0.7187500000 | 0.7031250000 | 0.0240836944 |
6 | 0.6875000000 | 0.7031250000 | 0.6953125000 | -0.0834089667 |
7 | 0.6953125000 | 0.7031250000 | 0.6992187500 | -0.0295295101 |
8 | 0.6992187500 | 0.7031250000 | 0.7011718750 | -0.0026894973 |
9 | 0.7011718750 | 0.7031250000 | 0.7021484375 | 0.0107056862 |
10 | 0.7011718750 | 0.7021484375 | 0.7016601562 | 0.0040097744 |
11 | 0.7011718750 | 0.7016601562 | 0.7014160156 | 0.0006612621 |
12 | 0.7011718750 | 0.7014160156 | 0.7012939453 | -0.0010144216 |
13 | 0.7012939453 | 0.7014160156 | 0.7013549805 | -0.0001766436 |
14 | 0.7013549805 | 0.7014160156 | 0.7013854980 | 0.0002420362 |
15 | 0.7013549805 | 0.7013854980 | 0.7013702393 | 0.0000326998 |
16 | 0.7013549805 | 0.7013702393 | 0.7013626099 | -0.0000715650 |
17 | 0.7013626099 | 0.7013702393 | 0.7013664246 | -0.0000194324 |
18 | 0.7013664246 | 0.7013702393 | 0. 7013683 319 | 0.0000069206 |
Exercise: - Find the solutions of the following problems accurate to within using Bisection Method.
(1) for
(2) for
Next: False position or Regula: Up :Main Previous: Numerical Analysis