next up previous
Next: 2.3.2 Newton-Gregory Backward Difference Up: 2.3 Newton Interpolation Polynomial Previous: 2.3 Newton Interpolation Polynomial

2.3.1 Gregory-Newton Forward Difference Approach:

Very often it so happens in practice that the given data set $ (x_{i},y_{i}),i=0,1,...n$ correspond to a sequence $ \{x_{i}\}$ of equally spaced points. Here we can assume that

$\displaystyle x_{i}=x_{0}+ih,\qquad i=0,1,2..n$ (1)

where $ x_{0}$ is the starting point (sometimes, for convenience, the middle data point is taken as $ x_{0}$ and in such a case the integer $ i$ is allowed to take both negative and positive values.) and is the step size. Further it is enough to calculate simple differences rather than the divided differences as in the non-uniformly placed data set case. These simple differences can be forward difference $ (\Delta f_{i})$ or back differences $ (\nabla f_{i})$. We will first look at forward differences and the interpolation polynomial based on forward differences.

The first order forward difference $ \Delta f_{i}$ is defined as

$\displaystyle \Delta f_{i}=f_{i+1}-f_{i}$ (7.1)

The second order forward difference $ \Delta^{2}f_{i}$ is defined as

$\displaystyle \Delta^{2}f_{i}=\Delta f_{i+1}-\Delta f_{i}$ (7.2)

The $ k^{th}$ order forward difference $ \Delta^{k}f_{i}$ is defined as

$\displaystyle \Delta^{k}f_{i}=\Delta^{k-1}f_{i+1}-\Delta^{k-1}f_{i}$ (7.3)

Since we already know Newton interpolation polynomial in terms of divided differences, to derive or generate Newton interpolation polynomial in terms of forward differences it is enough to express forward differences in terms of divided differences.

Recall the definition of first divided difference $ f[x_{0},x_{1}]$,

$\displaystyle f[x_{0},x_{1}]=\frac{f(x_{1})-f(x_{0})}{x_{1}-x_{0}}=\frac{f_{1}-f_{0}}{h}=\frac{\Delta
f_{0}}{h}$

% latex2html id marker 2670
$\displaystyle \therefore \Delta f_{0}=hf[x_{0},x_{1}]$ (8.1)

Similarly we can get

$\displaystyle \Delta f_{1}= hf[x_{1},x_{2}]$ (8.2)

By the definition second order forward difference $ \Delta^{2}f_{0}$, we get
$\displaystyle \Delta^{2}f_{0}$ $\displaystyle =$ $\displaystyle \Delta f_{1}-\Delta f_{0}$  
  $\displaystyle =$ $\displaystyle hf[x_{1},x_{2}]-hf[x_{0},x_{1}]\quad \quad \quad \quad \quad
\quad (using (8.1)(8.2))$  
  $\displaystyle =$ $\displaystyle h\{f[x_{1},x_{2}]-f[x_{0},x_{2}]\}$  
  $\displaystyle =$ $\displaystyle h.2h\{(f[x_{1},x_{2}]-f[x_{0},x_{2}])/2h\}$  
  $\displaystyle =$ $\displaystyle 2h^{2}f[x_{0},x_{1},x_{2}]\qquad \qquad \qquad \qquad \qquad
\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
\qquad (8.3)$  

In a similar way, in general, we can show that

$\displaystyle \Delta^{k}f_{i}=k!h^{k}f[x_{i},x_{i+1},x_{i+2}...x_{i+k}]$ (8.4)

% latex2html id marker 2701
$\displaystyle \therefore f[x_{i},x_{i+1},...x_{i+k}]=\frac{\Delta^{k}f_{i}}{k!h^{k}}$ (8.5)

For $ i=0$,

$\displaystyle f[x_{0},x_{1}...x_{k}]=\frac{\Delta^{k}f_{0}}{k!h^{k}}$ (8.6)

Now using (6) ,(8.6) the Newton forward difference interpolation polynomial may be written as follows.

$\displaystyle p_{n}(x)=\sum\limits_{k=0}^{n}\quad\frac{\Delta^{k}f_{0}}{k!h^{k}}\prod\limits_{i=0}^{k-1}(x-x_{i})$ (9)

To rewrite (9) in a simpler way let us set

$\displaystyle x=x_{0}+sh,\quad p_{n}(s)=p_{n}(x)$

$\displaystyle \because x_{k}=x_{0}+kh$

$\displaystyle x-x_{k}=(s-k)h$


% latex2html id marker 2716
$\displaystyle \therefore \qquad p_{n}(s)$ $\displaystyle =$ $\displaystyle \sum\limits_{k=0}^{n}\quad
\frac{\Delta^{k}f_{0}}{k!h^{k}}\prod\limits_{i=0}^{k-1}(s-i)h$  
  $\displaystyle =$ $\displaystyle \sum\limits_{k=0}^{n}\quad\frac{\Delta^{k}f_{0}}{k!h^{k}}\quad[s(s-1).......(s-k+1)]h^{k}$  

i.e.

$\displaystyle p_{n}(s)=\sum\limits_{k=0}^{n}\left(\begin{array}{c} s \\ k \\ \end{array}\right)\Delta^{k}f_{0}$ (10)

where


This is known as Gregory-Newton forward difference interpolation polynomial. For Convenience while constructing (10) one can first generate a forward difference table and use the $ \Delta^{k}f_{i}$ from the table. Suppose we have data set $ (x_{i}f_{i})$, $ i=0,1,2,3,4$ then forward difference table looks as follows:

Example:
Given the following data, estimate $ f(1.85)$ using Newton-Gregory forward difference interpolation polynomial:
i 0 1 2 3 4
$ x_{i}$ 1.0 3.0 5.0 7.0 9.0
$ f_{i}$ 0 1.0986 1.6094 1.9459 2.1972
Solution:
Here we have five data points i.e $ i=0,1,2,3,4.$ Let us first generate the forward difference table.

$\displaystyle h=2,\quad x=1.83,\quad x_{0}=1.0,\quad s=\frac{x-x_{0}}{h}=0.415$

Newton Gregory forward difference interpolation polynomial is given by:

$\displaystyle p_{n}(s)=\sum\limits_{k=0}^{n}\left(\begin{array}{c} s \\ k \\ \end{array}\right)\Delta^{k}f_{0}$    


$\displaystyle p_{1}(0.415)$ $\displaystyle =$ $\displaystyle \left(\begin{array}{c}
0.415 \\
0 \\
\end{array}\right)f_{0}+\left(\begin{array}{c}
0.415 \\
1 \\
\end{array}\right)\Delta f_{0}$  
  $\displaystyle =$ $\displaystyle 0+(0.415)(1.0986)=0.455919$  


$\displaystyle p_{2}(0.415)$ $\displaystyle =$ $\displaystyle p_{1}(0.415)+\left(\begin{array}{c}
0.415 \\
2 \\
\end{array}\right)\Delta^{2}f_{0}$  
  $\displaystyle =$ $\displaystyle 0.455919+\frac{0.415(0.415-1)}{2}(-0.5878)$  
  $\displaystyle =$ $\displaystyle 0.455919+0.071352$  
  $\displaystyle =$ $\displaystyle 0.527271$  


$\displaystyle p_{3}(0.415)$ $\displaystyle =$ $\displaystyle p_{2}(0.415)+\left(\begin{array}{c}
0.415 \\
3 \\
\end{array}\right)\Delta^{3} f_{0}$  
  $\displaystyle =$ $\displaystyle 0.527271+\frac{0.415(0.415-1)(0.415.2)}{6}(0.4135)$  
  $\displaystyle =$ $\displaystyle 0.527271+0.026519$  
  $\displaystyle =$ $\displaystyle 0.554157$  


$\displaystyle P_{4}(0.415)$ $\displaystyle =$ $\displaystyle P_{3}(0.415)+\left(\begin{array}{c}
0.415 \\
4 \\
\end{array}\right)\Delta^{4} f_{0}$  
  $\displaystyle =$ $\displaystyle 0.554157+\frac{0.415(0.415-1)(0.415-2)(0.415-3)}{24}(-0.3244)$  
  $\displaystyle =$ $\displaystyle 0.554157+0.013445$  
  $\displaystyle =$ $\displaystyle 0.567602$  

% latex2html id marker 2838
$\displaystyle \therefore f(1.83)=0.567602$


Example 2:
Given the following data estimate f(4.12) using Newton-Gregory forward difference interpolation polynomial:
i 0 1 2 3 4 5
$ x_{i}$ 0 1 2 3 4 5
$ f_{i}$ 1 2 4 8 16 32
Solution:
Let us first generate the Newton-Gregory forward difference Table:
Here $ i=0,1,2,3,4,5;$
$ x=4.12,\quad x_{0}=0,\quad h=1, \quad
\displaystyle{s=\frac{x-x_{0}}{h}=\frac{4.12}{1}=4.12}$

We know that the forward difference interpolation polynomial is given by:

   


% latex2html id marker 2873
$\displaystyle \therefore P_{1} (4.12)$ $\displaystyle =$  
  $\displaystyle =$ $\displaystyle f_{0}+4.12\quad \Delta f_{0}$  
  $\displaystyle =$ $\displaystyle 1+(4.12)(1)=5.12\qquad \qquad \qquad \qquad \qquad \qquad
\qquad \quad \qquad (10a.1)$  


$\displaystyle P_{2}(4.12)$ $\displaystyle =$  
  $\displaystyle =$ $\displaystyle 5.12+\frac{4.12(4.12-1)}{2}1$  
  $\displaystyle =$ $\displaystyle 5.12+6.4272=11.5472\qquad \qquad \qquad \qquad \qquad \qquad
\quad \qquad (10a.2)$  


$\displaystyle P_{3}(4.12)$ $\displaystyle =$  
  $\displaystyle =$ $\displaystyle 11.5472+\frac{4.12(4.12-1)(4.12-2)}{6}1$  
  $\displaystyle =$ $\displaystyle 11.5472+4.5419$  
  $\displaystyle =$ $\displaystyle 16.0891 \qquad \qquad \qquad \qquad \qquad \qquad \quad \qquad
\qquad \qquad \qquad \qquad(10a.3)$  


$\displaystyle p_{4}(4.12)$ $\displaystyle =$  
  $\displaystyle =$ $\displaystyle 16.0891+\frac{4.12(4.12-1)(4.12-2)(4.12-3)}{24}1$  
  $\displaystyle =$ $\displaystyle 16.0891+1.2717$  
  $\displaystyle =$ $\displaystyle 17.3608 \qquad \qquad \qquad \qquad \qquad \quad \qquad
\qquad\qquad \qquad \qquad \qquad(10a.4)$  


$\displaystyle p_{5}(4.12)$ $\displaystyle =$ $\displaystyle p_{4}(4.12)+\frac{4.12(4.12-1)(4.12-2)(4.12-3)(4.12-4)}{120}$  
  $\displaystyle =$ $\displaystyle 17.3608+0.0305$  
  $\displaystyle =$ $\displaystyle 17.3913\qquad \qquad \quad \qquad \qquad \qquad \qquad \qquad
\qquad \qquad \qquad \qquad \quad(10a.5)$  

% latex2html id marker 2955
$\displaystyle \therefore f(4.12)=17.3913$


next up previous
Next: 2.3.2 Newton-Gregory Backward Difference Up: 2.3 Newton Interpolation Polynomial Previous: 2.3 Newton Interpolation Polynomial
root 2006-02-14