Method of Undetermined Coefficients

In the previous section, we have seen than a general solution of

$\displaystyle L_n(y) = f (x) \;\; {\mbox{ on }} \;\; I$ (8.7.6)

can be written in the form

$\displaystyle y = y_h + y_p,$

where $ y_h$ is a general solution of $ L_n(y) = 0$ and $ y_p$ is a particular solution of (8.7.6). In view of this, in this section, we shall attempt to obtain $ y_p$ for (8.7.6) using the method of undetermined coefficients in the following particular cases of $ f(x);$
  1. $ f(x) = k e^{{\alpha}x}; \;\; k \neq 0, {\alpha}\; {\mbox{ a real constant}}$
  2. $ f(x) = e^{{\alpha}x}\bigl( k_1 \cos (\beta x) + k_2 \sin (\beta x) \bigr);
\;\; k_1, k_2, {\alpha}, \beta \in {\mathbb{R}}$
  3. $ f(x) = x^m.$

Case I. $ f(x) = k e^{{\alpha}x}; \;\; k \neq 0, {\alpha}\; {\mbox{ a real constant.}}$
We first assume that $ {\alpha}$ is not a root of the characteristic equation, i.e., $ p({\alpha}) \neq 0.$ Note that $ L_n(e^{{\alpha}x}) =
p({\alpha}) e^{{\alpha}x}.$ Therefore, let us assume that a particular solution is of the form

$\displaystyle y_p =
A e^{{\alpha}x},$

where $ A,$ an unknown, is an undetermined coefficient. Thus

$\displaystyle L_n(y_p) = A p({\alpha}) e^{{\alpha}x}.$

Since $ p({\alpha}) \neq 0,$ we can choose $ A = \displaystyle\frac{k}{p({\alpha})}$ to obtain

$\displaystyle L_n(y_p) = k e^{{\alpha}x}.$

Thus, $ y_p = \displaystyle\frac{k}{p({\alpha})}
e^{{\alpha}x}$ is a particular solution of $ L_n(y) = k e^{{\alpha}x}.$

Modification Rule: If $ {\alpha}$ is a root of the characteristic equation, i.e., $ p({\alpha}) = 0,$ with multiplicity $ r,$ (i.e., $ p({\alpha}) = p^\prime({\alpha}) = \cdots = p^{(r-1)}({\alpha}) = 0$ and $ p^{(r)}({\alpha}) \neq 0$ ) then we take, $ y_p$ of the form

$\displaystyle y_p = A x^r e^{{\alpha}x}$

and obtain the value of $ A$ by substituting $ y_p$ in $ L_n(y) = k e^{{\alpha}x}.$

EXAMPLE 8.7.1  
  1. Find a particular solution of

    $\displaystyle y^{\prime\prime} - 4 y = 2 e^{x}.$


    Solution: Here $ f(x) = 2 e^x$ with $ k = 2$ and $ {\alpha}= 1.$ Also, the characteristic polynomial, $ p({\lambda}) = {\lambda}^2 - 4.$ Note that $ {\alpha}= 1$ is not a root of $ p({\lambda}) = 0.$ Thus, we assume $ y_p = A e^{x}.$ This on substitution gives

    $\displaystyle A e^x - 4 A e^x = 2 e^x \;\; \Longrightarrow - 3 A e^x = 2 e^x.$

    So, we choose $ A = \displaystyle\frac{-2}{3},$ which gives a particular solution as

    $\displaystyle y_p = \frac{-2 e^{x}}{3}.$

  2. Find a particular solution of

    $\displaystyle y^{\prime\prime\prime} -3 y^{\prime\prime} + 3 y^\prime
- y = 2 e^{x}.$


    Solution: The characteristic polynomial is $ p({\lambda}) = {\lambda}^3 - 3{\lambda}^2 + 3 {\lambda}- 1 = ({\lambda}- 1)^3$ and $ {\alpha}= 1.$ Clearly, $ p(1) = 0$ and $ {\lambda}={\alpha}=1$ has multiplicity $ r = 3.$ Thus, we assume $ y_p = A x^3 e^{x}.$ Substituting it in the given equation,we have
    $\displaystyle A e^x \left( x^3 + 9 x^2 + 18 x + 6 \right)$ $\displaystyle -$ $\displaystyle 3 A e^x \left(
x^3 + 6 x^2 + 6 x\right)$  
      $\displaystyle +$ $\displaystyle 3 A e^x \left( x^3 + 3 x^2 \right)
- A x^3 e^x = 2 e^x.$  

    Solving for $ A,$ we get $ A = \displaystyle\frac{1}{3},$ and thus a particular solution is $ y_p = \displaystyle \frac{x^3 e^{x}}{3}.$
  3. Find a particular solution of

    $\displaystyle y^{\prime\prime\prime} - y^\prime = e^{2x}.$


    Solution: The characteristic polynomial is $ p({\lambda}) = {\lambda}^3 - {\lambda}$ and $ {\alpha}= 2.$ Thus, using $ y_p = A e^{ 2 x},$ we get $ A = \displaystyle\frac{1}{p({\alpha})} = \frac{1}{6},$ and hence a particular solution is $ y_p = \displaystyle\frac{e^{2x}}{6}.$
  4. Solve $ y^{\prime\prime\prime} -3 y^{\prime\prime} + 3 y^\prime
- y = 2 e^{2x}.$

EXERCISE 8.7.2   Find a particular solution for the following differential equations:
  1. $ y^{\prime\prime} - 3 y^{\prime} + 2 y = e^{x}.$
  2. $ y^{\prime\prime} - 9 y = e^{3 x}.$
  3. $ y^{\prime\prime\prime} -3 y^{\prime\prime} + 6 y^\prime
- 4 y = e^{2x}.$

Case II. $ f(x) = e^{{\alpha}x}\bigl( k_1 \cos (\beta x) + k_2 \sin (\beta x) \bigr);
\;\; k_1, k_2, {\alpha}, \beta \in {\mathbb{R}}$
We first assume that $ {\alpha}+ i \beta$ is not a root of the characteristic equation, i.e., $ p({\alpha}+ i \beta) \neq 0.$ Here, we assume that $ y_p$ is of the form

$\displaystyle y_p = e^{{\alpha}x}\bigl( A \cos (\beta x) + B \sin (\beta x) \bigr),$

and then comparing the coefficients of $ e^{{\alpha}x} \cos x$ and $ e^{{\alpha}x} \sin x$ (why!) in $ L_n(y) = f(x),$ obtain the values of $ A$ and $ B.$

Modification Rule: If $ {\alpha}+ i \beta$ is a root of the characteristic equation, i.e., $ p({\alpha}+ i \beta) = 0,$ with multiplicity $ r,$ then we assume a particular solution as

$\displaystyle y_p = x^r e^{{\alpha}x}\bigl( A \cos (\beta x) + B \sin (\beta x) \bigr),$

and then comparing the coefficients in $ L_n(y) = f(x),$ obtain the values of $ A$ and $ B.$

EXAMPLE 8.7.3  
  1. Find a particular solution of

    $\displaystyle y^{\prime\prime} + 2 y^\prime + 2 y = 4 e^{x}\sin x.$


    Solution: Here, $ {\alpha}= 1$ and $ \beta = 1.$ Thus $ {\alpha}+ i \beta = 1 + i,$ which is not a root of the characteristic equation $ p({\lambda}) = {\lambda}^2 + 2 {\lambda}+ 2=0.$ Note that the roots of $ p({\lambda}) = 0$ are $ -1 \pm i.$

    Thus, let us assume $ y_p = e^{x}\left( A \sin x + B \cos x\right).$ This gives us

    $\displaystyle (-4 B + 4 A) e^x \sin x + (4 B + 4 A) e^x \cos x = 4 e^x \sin x.$

    Comparing the coefficients of $ e^x \cos x$ and $ e^x \sin x$ on both sides, we get $ A - B = 1$ and $ A + B = 0.$ On solving for $ A$ and $ B,$ we get $ A = -B = \displaystyle\frac{1}{2}.$ So, a particular solution is $ y_p = \displaystyle \frac{e^{x}}{2}\left(
\sin x - \cos x \right).$
  2. Find a particular solution of

    $\displaystyle y^{\prime\prime} + y = \sin x.$


    Solution: Here, $ {\alpha}= 0$ and $ \beta = 1.$ Thus $ {\alpha}+ i \beta = i,$ which is a root with multiplicity $ r = 1,$ of the characteristic equation $ p({\lambda}) = {\lambda}^2 + 1=0. $

    So, let $ y_p = {x}\left( A \cos x + B \sin x\right).$ Substituting this in the given equation and comparing the coefficients of $ \cos x$ and $ \sin x$ on both sides, we get $ B = 0$ and $ A = -\displaystyle\frac{1}{2}.$ Thus, a particular solution is $ y_p = \displaystyle \frac{-1}{2} x \cos x.$

EXERCISE 8.7.4   Find a particular solution for the following differential equations:
  1. $ y^{\prime\prime\prime} - y^{\prime\prime} + y^\prime
- y = e^{x}\cos x.$
  2. $ y^{\prime\prime\prime\prime} + 2 y^{\prime\prime} +
y = \sin x.$
  3. $ y^{\prime\prime} - 2 y^{\prime} + 2 y = e^{x} \cos x.$

Case III. $ f(x) = x^m.$
Suppose $ p(0) \neq 0.$ Then we assume that

$\displaystyle y_p = A_m x^m + A_{m-1} x^{m-1} + \cdots + A_0$

and then compare the coefficient of $ x^k$ in $ L_n(y_p) = f(x)$ to obtain the values of $ A_i$ for $ 0 \leq i \leq m.$

Modification Rule: If $ {\lambda}= 0$ is a root of the characteristic equation, i.e., $ p(0) = 0,$ with multiplicity $ r,$ then we assume a particular solution as

$\displaystyle y_p = x^r \left( A_m x^m + A_{m-1} x^{m-1} + \cdots + A_0\right)$

and then compare the coefficient of $ x^k$ in $ L_n(y_p) = f(x)$ to obtain the values of $ A_i$ for $ 0 \leq i \leq m.$

EXAMPLE 8.7.5   Find a particular solution of

$\displaystyle y^{\prime\prime\prime} - y^{\prime\prime} + y^\prime - y
= x^2.$


Solution: As $ p(0) \neq 0,$ we assume

$\displaystyle y_p = A_2 x^2+
A_1 x + A_0$

which on substitution in the given differential equation gives

$\displaystyle - 2 A_2 + (2 A_2 x + A_1) - ( A_2 x^2 + A_1 x + A_0) = x^2.$

Comparing the coefficients of different powers of $ x$ and solving, we get $ A_2 = -1, \; A_1 = -2$ and $ A_0 = 0.$ Thus, a particular solution is

$\displaystyle y_p = - ( x^2 + 2 x).$

Finally, note that if $ y_{p_1}$ is a particular solution of $ L_n(y)= f_1(x)$ and $ y_{p_2}$ is a particular solution of $ L_n(y)= f_2(x),$ then a particular solution of

$\displaystyle L_n(y) = k_1 f_1(x) + k_2 f_2(x)$

is given by

$\displaystyle y_p = k_1 y_{p_1} + k_2 y_{p_2}.$

In view of this, one can use method of undetermined coefficients for the cases, where $ f(x)$ is a linear combination of the functions described above.

EXAMPLE 8.7.6   Find a particular soltution of

$\displaystyle y^{\prime\prime} + y = 2 \sin x + \sin 2x.$


Solution: We can divide the problem into two problems:
  1. $ y^{\prime\prime} + y = 2 \sin x.$
  2. $ y^{\prime\prime} + y = \sin 2x.$
For the first problem, a particular solution (Example 8.7.3.2) is $ y_{p_1} = 2 \; \displaystyle \frac{-1}{2} x \cos x = - x \cos x.$

For the second problem, one can check that $ y_{p_2} = \displaystyle \frac{-1}{3} \sin (2 x)$ is a particular solution.

Thus, a particular solution of the given problem is

$\displaystyle y_{p_1} + y_{p_2} = - x \cos x -
\frac{1}{3} \sin (2 x).$

EXERCISE 8.7.7   Find a particular solution for the following differential equations:
  1. $ y^{\prime\prime\prime} - y^{\prime\prime} + y^\prime
- y = 5 e^{x}\cos x+ 10 e^{2x}.$
  2. $ y^{\prime\prime} + 2 y^\prime + y = x + e^{-x}.$
  3. $ y^{\prime\prime} + 3 y^\prime - 4 y = 4 e^{x} + e^{4x}.$
  4. $ y^{\prime\prime} + 9 y = \cos x + x^2 + x^3.$
  5. $ y^{\prime\prime\prime} - 3 y^{\prime\prime} + 4 y^\prime
= x^2 + e^{2x} \sin x.$
  6. $ y^{\prime\prime\prime\prime} + 4 y^{\prime\prime\prime} +
6 y^{\prime\prime} + 4 y^\prime+ 5 y = 2 \sin x + x^2.$

A K Lal 2007-09-12