Central Difference Operator

DEFINITION 11.2.19 (Central Difference Operator)   The FIRST CENTRAL DIFFERENCE OPERATOR, denoted by $ \delta,$ is defined by

$\displaystyle \delta f(x)=f(x+ \frac{h}{2})-f(x- \frac{h}{2})$

and the #MATH5164# MATHEND000# CENTRAL DIFFERENCE OPERATOR is defined as
$\displaystyle \delta ^rf(x)$ $\displaystyle =$ $\displaystyle \delta ^{r-1}f(x+\frac{h}{2})-
\delta^{r-1}f(x- \frac{h}{2})$  
$\displaystyle {\mbox{with }}$   $\displaystyle \delta ^0 f(x)=f(x).$  

Thus, $ \delta^2 f(x) = f(x+h)-2f(x)+f(x-h).$

In particular, for $ x=x_k,$ define $ y_{k+\frac{1}{2}}
= f( x_k + \frac{h}{2}),$ and $ y_{k-\frac{1}{2}}
= f( x_k - \frac{h}{2}),$ then

$\displaystyle \delta y_k= y_{k+\frac{1}{2}}-y_{k-\frac{1}{2}} \;\; {\mbox{ and }} \;\;
\delta^2 y_k = y_{k+1}- 2y_k+ y_{k-1}.$

Thus, $ \delta^2$ uses the table of $ (x_k, y_k).$ It is easy to see that only the even central differences use the tabular point values $ (x_k, y_k).$



A K Lal 2007-09-12