Forward Difference Operator

DEFINITION 11.2.1 (First Forward Difference Operator)  

We define the FORWARD DIFFERENCE OPERATOR, denoted by $ \Delta,$ as

$\displaystyle \Delta f(x)=f(x+h)-f(x). $

The expression $ f(x+h) - f(x)$ gives the FIRST FORWARD DIFFERENCE of $ f(x)$ and the operator $ \Delta$ is called the FIRST FORWARD DIFFERENCE OPERATOR. Given the step size $ h,$ this formula uses the values at $ x$ and $ x+h,$ the point at the next step. As it is moving in the forward direction, it is called the forward difference operator.

\includegraphics[scale=0.6]{num_line.eps}

DEFINITION 11.2.2 (Second Forward Difference Operator)   The second forward difference operator, $ \Delta^2,$ is defined as

$\displaystyle \Delta^2 f(x) = \Delta \bigl( \Delta f(x) \bigr) = \Delta f(x+h) -
\Delta f(x).$

We note that
$\displaystyle \Delta^2 f(x)$ $\displaystyle =$ $\displaystyle \Delta f(x+h)- \Delta f(x)$  
  $\displaystyle =$ $\displaystyle \bigl( f(x+2h)- f(x+h) \bigr) - \bigl( f(x+h) - f(x) \bigr)$  
  $\displaystyle =$ $\displaystyle f(x+ 2 h) - 2 f(x+h) + f(x).$  

In particular, for $ x=x_k,$ we get,

$\displaystyle \Delta y_k=y_{k+1}-y_k$

and

$\displaystyle \Delta^2 y_k=\Delta y_{k+1}-\Delta y_k =
y_{k+2}-2y_{k+1} + y_{k}.$

DEFINITION 11.2.3 ( $ r^{\mbox{th}}$ Forward Difference Operator)   The $ r^{\mbox{th}}$ forward difference operator, $ \Delta^r,$ is defined as
$\displaystyle \Delta^{r} f(x)$ $\displaystyle =$ $\displaystyle \Delta^{r-1} f(x+h)- \Delta^{r-1}f(x),
\qquad\qquad r=1,2, \ldots,$  
$\displaystyle {\mbox{with }}$   $\displaystyle \Delta^0 f(x)=f(x).$  

EXERCISE 11.2.4   Show that $ \Delta^3 y_k = \Delta^2 (\Delta y_k) = \Delta (\Delta^2 y_k).$ In general, show that for any positive integers $ r$ and $ m$ with $ r > m,$

$\displaystyle \Delta^r y_k = \Delta^{r-m} (\Delta^m y_k) = \Delta^m (\Delta^{r-m} y_k).$

EXAMPLE 11.2.5   For the tabulated values of $ y=f(x)$ find $ \Delta y_3$ and $ \Delta^3 y_2$

$\displaystyle \begin{tabular}{c\vert c\vert c\vert c\vert c\vert c\vert c} $i$ ...
... & 0.5 \\
$y_i$ & 0.05 & 0.11 & 0.26 & 0.35 & 0.49 & 0.67 \\
\end{tabular}.$

Solution: Here,

$\displaystyle \Delta y_3=y_4-y_3=0.49-0.35=0.14, \;\;
{\mbox{ and }} $


$\displaystyle \Delta^3 y_2$ $\displaystyle =$ $\displaystyle \Delta (\Delta^2 y_2) = \Delta ( y_4 - 2 y_3 + y_2)$  
  $\displaystyle =$ $\displaystyle (y_5 - y_4) - 2 ( y_4 - y_3) + (y_3 - y_2)$  
  $\displaystyle =$ $\displaystyle y_5 - 3y_4 + 3y_3 - y_2$  
  $\displaystyle =$ $\displaystyle 0.67 - 3 \times 0.49 + 3 \times 0.35-0.26= - 0.01.$  

Remark 11.2.6   Using mathematical induction, it can be shown that

$\displaystyle \Delta ^r y_k =\sum\limits_{j=0}^r (-1)^{r-j}{r \choose j } y_{k+j}.$

Thus the $ r^{\mbox{th}}$ forward difference at $ y_k$ uses the values at $ y_k, y_{k+1},\ldots, y_{k+r}.$

EXAMPLE 11.2.7   If $ f(x)=x^2+ax+b,$ where $ a$ and $ b$ are real constants, calculate $ \Delta^r f(x).$

Solution: We first calculate $ \Delta f(x)$ as follows:
$\displaystyle \Delta f(x)$ $\displaystyle =$ $\displaystyle f(x+h)-f(x)=\left[(x+h)^2 + a(x+h) +b
\right]- \left[ x^2+ax+b \right]$  
  $\displaystyle =$ $\displaystyle 2xh+h^2 + ah.$  

Now,
$\displaystyle \Delta^2 f(x)$ $\displaystyle =$ $\displaystyle \Delta f(x+h)-\Delta f(x)
= [2(x+h)h+h^2 + ah]-[2xh+h^2+ah]=2 h^2,$  
$\displaystyle {\mbox{ and}} \hspace{0.5in} \Delta ^3f(x)$ $\displaystyle =$ $\displaystyle \Delta^2 f(x)-\Delta^2 f(x)
= 2 h^2- 2 h^2=0.$  

Thus, $ \Delta ^r f(x)=0$   for all $ \,\, r \geq 3.$




Remark 11.2.8   In general, if $ f(x)=x^n+a_1 x^{n-1}+a_2 x^{n-2}+ \cdots+ a_{n-1} x + a_n$ is a polynomial of degree $ n,$ then it can be shown that

$\displaystyle \Delta^n
f(x)= n! \, h^n \;\; {\mbox{ and }} \;\; \Delta ^{n+r}f(x)=0
\qquad {\mbox{ for }}\,\, r=1,2,\ldots.$

The reader is advised to prove the above statement.

Remark 11.2.9  
  1. For a set of tabular values, the horizontal forward difference table is written as:
    $ x_0$ $ y_0$ $ \Delta y_0 = y_1 - y_0 $ $ \Delta^2 y_0 = \Delta y_1 -
\Delta y_0 $ $ \cdots$ $ \Delta^n y_0 =
\Delta^{n-1} y_1 - \Delta^{n-1} y_0 $
    $ x_1$ $ y_1$ $ \Delta^2 y_1 = \Delta y_2 -
\Delta y_1 $ $ \cdots$
    $ x_2$ $ y_2$ $ \Delta y_2= y_3 - y_2 $ $ \Delta^2 y_2 = \Delta y_3 -
\Delta y_2 $
    &vellip#vdots;
    $ x_{n-1}$ $ y_{n-1}$ $ \Delta y_{n-1}= y_n - y_{n-1} $
    $ x_n$ $ y_n$
  2. In many books, a diagonal form of the difference table is also used. This is written as:
    $ x_0$ $ y_0$
    $ \Delta y_0 $
    $ x_1$ $ y_1$ $ \Delta^2 y_0 $
    $ \Delta y_1 $ $ \Delta^3 y_0$
    $ x_2$ $ y_2$ $ \Delta^2 y_1 $
    &vellip#vdots; $ \Delta y_{n-1}$
    $ x_{n-2} $ $ y_{n-2}$ $ \Delta^2 y_{n-3} $
    $ \Delta y_{n-2}$ $ \Delta^3 y_{n-3} $
    $ x_{n-1}$ $ y_{n-1}$ $ \Delta^2 y_{n-2} $
    $ \Delta y_{n-1}$
    $ x_n$ $ y_n$

However, in the following, we shall mostly adhere to horizontal form only.

A K Lal 2007-09-12