next up previous contents
Next: Norton Theorem Up: Lecture 4: More on Previous: Lecture 4: More on   Contents

Thevenin's Theorem

$ v$ and $ i$ will vary linearly in Fig.5.13.

Figure 5.13: Network (having sources also)
\includegraphics[width=3.0in]{lec4figs/13.eps}


$\displaystyle \Delta v \propto \Delta i$      
$\displaystyle \frac{\Delta v}{\Delta i}=K$      
$\displaystyle v=Ki+c$      
$\displaystyle when\;v=0,\;i=\frac{-c}{K}$      
$\displaystyle when\;i=0,\;v=c$      

This implies that voltage across load in figure 5.14 should be $ v=Ki+c$

This implies: (see 5.15) $ v=c-(-K)i$, that is, $ v=c+Ki$.

Figure 5.14:
\includegraphics[width=3.0in]{lec4figs/14.eps}
Figure 5.15: Getting an equivalent network
\includegraphics[width=3.0in]{lec4figs/15.eps}

Hence, equivalent of network at terminal AB is shown in figure 5.16.

Figure 5.16: Equivalent Network
\includegraphics[width=3.0in]{lec4figs/16.eps}

Here,
$ V_{th}=C=$open circuit voltage
$ R_{th}=\frac{open\;ckt\;voltage}{short\;ckt\;current}$

The two figures shown in figure 5.17 are equivalent. When the source inside the network is neglected (if voltage source, short ckted, if current source, open ckted)

Figure 5.17: Thevenin's Theorem: the two figures are equivalent
\includegraphics[width=3.0in]{lec4figs/17.eps}

The same could be done with equivalent circuit.
hence, we get 5.18.

Figure 5.18:
\includegraphics[width=3.0in]{lec4figs/18.eps}


next up previous contents
Next: Norton Theorem Up: Lecture 4: More on Previous: Lecture 4: More on   Contents
ynsingh 2007-07-25