next up previous contents
Next: Other ways of realizing Up: Digital Circuits Previous: Using NAND gates   Contents

Boolean Expressions

A general realization of a Boolean expression is shown in 12.15

Figure 12.15: Realization of a Boolean Expression: shown as a black box
\includegraphics[width=2.5in]{lec15figs/15.eps}
Example:
In a car, we have the following components:
A
Day-night sensor: Day-1, Night-0
B
Lamps on: On-1, Off-0
C
Ignition on: On-1, Off-0
D
Warning light for lamps-on
In this case, the truth table for the logic D would be
A B C D
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Therefore, $ D=\overline{A}\overline{B}C+\overline{A}B\overline{C}+A\overline{B}\overline{C...
...e{C}+ABC=\overline{A}\overline{B}C+\overline{A}B\overline{C}+AB\overline{C}+ABC$, which can be written as $ \sum\;1,2,6,7$ in the sum of product form. We arrive at this by looking at the combinations when the outout is one.

We can alternatively, express this in the product of sums form by looking at the combinatins when the outout is low as $ D=(A+B+C)\centerdot (A+\overline{B}+\overline{C})\centerdot (\overline{A}+B+C)\centerdot (\overline{A}+B+\overline{C})=\Pi 0,4,5,6$

Using SOP and POS, it can be implemented as follows:

\includegraphics[width=3.5in]{lec15figs/M1.eps}

Next, we will try to reduce the number of gates by combining terms suitably.

$\displaystyle D$ $\displaystyle =$ $\displaystyle \overline{A}\overline{B}C+\overline{A}B\overline{C}+AB\overline{C}+ABC$  
  $\displaystyle =$ $\displaystyle \overline{A}\overline{B}C+\overline{A}B\overline{C}+AB$  
  $\displaystyle =$ $\displaystyle B(A+\overline{A}\overline{C})+\overline{A}\overline{B}C$  
  $\displaystyle =$ $\displaystyle B(A+\overline{C})+\overline{A}\overline{B}$  
  $\displaystyle =$ $\displaystyle AB+B\overline{C}+\overline{A}\overline{B}C$  

\includegraphics[width=3.5in]{lec15figs/kmap.eps}

We can get the above by clubbing the $ 1'$s in the k-map shown.

Now, if we club the zeroes together in the k-map,

$\displaystyle D$ $\displaystyle =$ $\displaystyle (B+C)\centering (\overline{A}+B)\centering (A+\overline{B}+\overline{C})$  

Check that we get the same expression by simplifying the product of sums expression (by using (X+Y)(X+Z)=X+YZ)

Multiplexer

\includegraphics[width=3.5in]{lec15figs/M2.eps}
The truth table for the multiplexer is as follows:
$ S_1$ $ S_2$ $ O_0$
0 0 $ I_0$
0 1 $ I_1$
1 0 $ I_2$
1 1 $ I_3$

\includegraphics[width=3.5in]{lec15figs/M3.eps}


$\displaystyle C_0$ $\displaystyle =$ $\displaystyle \overline{S_1}\overline{S_0}$  
$\displaystyle C_1$ $\displaystyle =$ $\displaystyle \overline{S_1}S_0$  
$\displaystyle C_2$ $\displaystyle =$ $\displaystyle S_1\overline{S_0}$  
$\displaystyle C_3$ $\displaystyle =$ $\displaystyle S_1S_0$  


next up previous contents
Next: Other ways of realizing Up: Digital Circuits Previous: Using NAND gates   Contents
ynsingh 2007-07-25