next up previous contents
Next: Operational Amplifiers Up: Bipolar Junction Transistor Previous: Constant current source   Contents

Constant voltage source

\includegraphics{lec13figs/M7.eps}

We can also have a constant voltage source whose output voltage would be more or less independent of the load $ R_L$. See the above figure. The output voltage would be $ V_L=V_Z-0.7$ as long as the transistor is not cutoff. The output voltage is therefore dependent upon $ V_Z$.

We must ensure that the transistor is in the active region, whence, $ V_{BE}=0.7$ volts. Therefore,

$\displaystyle I_E$ $\displaystyle =$ $\displaystyle \frac{7.5-0.7}{R_l}$  
$\displaystyle I_B$ $\displaystyle =$ $\displaystyle \frac{I_E}{1+\beta}\;\approx\;\frac{I_E}{100}$  
$\displaystyle \mathrm{max}I_B$ $\displaystyle =$ $\displaystyle \frac{15-7.5}{10^3}=7.5\times 10^{-3}\mathrm{ Amps}$  
% latex2html id marker 9433
$\displaystyle \therefore \mathrm{ max}I_E$ $\displaystyle =$ $\displaystyle 100 \times 7.5 \mathrm{ Amps }=\;0.75 \mathrm{ Amps}$  
$\displaystyle \Rightarrow\quad\mathrm{min }R_L$ $\displaystyle =$ $\displaystyle \frac{7.5-0.7}{0.75\mathrm{ Amps}}$  
  $\displaystyle =$ $\displaystyle 9.07\mathrm{ Amps}$  

Therefore, the above circuit works as a constant voltage source for $ R_L>9.07\Omega$.


next up previous contents
Next: Operational Amplifiers Up: Bipolar Junction Transistor Previous: Constant current source   Contents
ynsingh 2007-07-25