Theorem 4.5:

(i) The projective spaces are compact and connected.

(ii) The projective space $ \mathbb{R}P^n$ is homeomorphic to the identification space $ (\mathbb{R}^{n+1} - \{0\})/\sim$ where

$\displaystyle {\bf x} \sim {\bf y}$    if and only if for some $\displaystyle \lambda \in \mathbb{R},\; {\bf x} = \lambda {\bf y}.
$

(iii) The projective space $ \mathbb{R}P^n$ is homeomorphic to the identification space $ E^n/\sim$ where $ {\bf x} \sim {\bf y}$ if and only if either $ {\bf x} = {\bf y}$ or else $ {\bf x}, {\bf y} \in S^{n-1}$ and $ {\bf x} = -{\bf y}$.


nisha 2012-03-20