Proof:

The result is clear if $ k = 0$. We proceed by induction on $ k$ and assume the result with $ k-1$ in place of $ k$. Let $ A = A^{+}\cup A^{-}$ where $ A^{+}$ and $ A^{-}$ are each homeomorphic to $ S^{k-1}$ and $ A^{+}\cap A^{-}$ is homeomorphic to $ S^{k-1}$. The Mayer Vietoris sequence may be applied to the open cover $ \{S^n - A^{+},\; S^n - A^{-}\}$ of $ S^n - A$ and the reader ought to verify that

$\displaystyle H_{j+1}(S^n - A^{+}\cap A^{-}) \cong H_j(S^n - A),\quad j > 0.
$

By induction hypothesis we get (41.5) for the case $ j > 0$. Let us now consider the case $ j = 0$. The tail end of the Mayer Vietoris sequence gives

$\displaystyle \begin{CD}
0@> >> H_1(S^n - S^{k-1})@> >>
H_0(S^n-S^k) @> r >> \mathbb{Z}\oplus\mathbb{Z}
@> q >>$   img$\displaystyle \;q @> >> 0\\
\end{CD}$

Since the image of $ q$ is isomorphic to $ \mathbb{Z}$, we see that the kernel of $ q$ must also be isomorphic to $ \mathbb{Z}$ giving a short exact sequence

$\displaystyle \begin{CD}
0@> >> H_1(S^n - S^{k-1})@> >>
H_0(S^n-S^k) @> r >>$   img$\displaystyle \;r @> >>0. \\
\end{CD} \eqno(41.6)
$

Since the image of $ r$ is free of rank one, (41.6) splits and we have

$\displaystyle H_0(S^n-S^k) = H_1(S^n - S^{k-1})\oplus \mathbb{Z}.
$

If $ k = n-1$ then $ 1 = n-(k-1)-1$ and so the induction hypothesis gives $ H_1(S^n - S^{k-1}) = \mathbb{Z}$ whereas if $ k \leq n-2$ then $ H_1(S^n - S^{k-1}) = 0$. $ \square$
nisha 2012-03-20