Definition 40.2 (Inductive limit):

Given a directed system $ \{M_{\alpha}\;/\; \alpha \in \Lambda\}$ in one of the categories Gr, AbGr or Top and a family of morphisms $ \{f_{\alpha\beta}:M_{\alpha}\longrightarrow M_{\beta}\;/\; \alpha \leq \beta\}$ in the same category satisfying the conditions in definition (40.1), an inductive limit is an object $ M$ together with a family of morphisms $ \{f_{\alpha}:M_{\alpha}\longrightarrow M\}$ such that the following two conditions hold:
(1)
For every pair $ \alpha, \beta \in \Lambda$ with $ \alpha \leq \beta$, $ f_{\beta}\circ f_{\alpha\beta} = f_{\alpha}$, summarized as a commutative diagram:

$\displaystyle \xymatrix{
M_{\alpha} \ar[rr]^{f_{\alpha\beta}}\ar[rd]_{f_{\alpha}} & & M_{\beta} \ar[ld]^{f_{\beta}}\\
& M
}
$

(2)
Universal property: Given an object $ L$ and a family of morphisms $ g_{\alpha}:M_{\alpha}\longrightarrow L$ satisfying

$\displaystyle g_{\beta}\circ f_{\alpha\beta} = g_{\alpha},\quad \alpha, \beta \in \Lambda, \alpha \leq \beta,
$

there exists a unique morphism $ \psi : M\longrightarrow L$ such that

$\displaystyle \psi\circ f_{\alpha} = g_{\alpha}.
$



nisha 2012-03-20