Proof:

We begin by proving (ii) implies (iii). Note that $ \phi$ is injective and so im$ \;\phi$ is isomorphic to $ K$. Let $ x \in G$ be arbitrary and observe that

$\displaystyle x - \phi \circ g(x)
$

lies in the kernel of $ g$ and hence in the image of $ f$. Thus,

$\displaystyle x = (x - \phi \circ g(x)) + \phi \circ g(x) \in$   im$\displaystyle f +$   im$\displaystyle \; \phi.
$

We leave it to the reader to check that the sum $ ($im$ f +$   im$ \; \phi)$ is direct. It is easy to show that (iii) implies (i). We now show that (i) implies (ii). Let $ k \in K$ and choose any $ x \in G$ such that $ k = g(x)$. Define $ \phi(k) = x - (f\circ \theta)(x)$. To check that this is well defined, suppose that $ k = g(x^{\prime}) = g(x^{\prime\prime})$ for a pair of elements $ x^{\prime}, x^{\prime\prime} \in G$. There exists $ y \in L$ such that $ x^{\prime} - x^{\prime\prime} = f(y)$. Applying $ f\circ\theta$ to this equation we get

$\displaystyle (f\circ \theta)(x^{\prime}) - (f\circ \theta)(x^{\prime\prime}) = f\circ\theta\circ f(y) = f(y) =
x^{\prime} - x^{\prime\prime},
$

from which we see that $ (f\circ \theta)(x^{\prime}) - x^{\prime} = (f\circ \theta)(x^{\prime\prime}) - x^{\prime\prime}$. It is trivial to see that the map $ \phi$ that we have defined is a group homomorphism and satisfies the requirement $ g \circ \phi =$   id$ _K$. $ \square$

nisha 2012-03-20