Definition 37.2:

A short exact sequence of abelian groups/chain complexes

$\displaystyle \begin{CD}
0@> >> L @> f >> G @> g >> K @> >> 0,
\end{CD} \eqno(37.6)
$

splits on the right if there exists a group homomorphism (respectively a chain map) $ \phi:K\longrightarrow G$ such that $ g \circ \phi =$   id$ _K$. The short exact sequence (37.6) splits on the left if there exists group homomorphism (respectively a chain map) $ \theta:G\longrightarrow L$ such that $ \theta \circ f =$   id$ _L$.

nisha 2012-03-20