Suspension:

Given a topological space $ X$, the suspension of $ X$ denoted by $ \Sigma X$, is obtained from $ X\times [0,1]$ by passing to a quotient (see the figure that follows equation (36.6)):

$\displaystyle \Sigma X =( X\times [0, 1])/(X\times \{0\} \cup X\times \{1\})
$

Using polar coordinates we can see that $ \Sigma S^{n-1} \cong S^n$ via the homeomorphism $ \phi:S^{n-1}\times [0, 1]\longrightarrow S^n$

$\displaystyle (\omega, t) \mapsto
((\sin\pi t)\;\omega, \cos \pi t),\quad t \in [0, 1],\;\; \omega \in S^{n-1}\subset \mathbb{R}^n. \eqno(36.5)
$

With this identification, given $ f:S^{n-1}\longrightarrow S^{n-1}$ continuous we define $ \Sigma f:S^n\longrightarrow S^n$ by

$\displaystyle (\Sigma f)((\sin\pi t)\;\omega, \cos \pi t) = ((\sin\pi t)f(\omega), \cos \pi t) \eqno(36.6)
$

in



nisha 2012-03-20