Proof:

Looking at the portion of the Mayer Vietoris sequence

$\displaystyle \begin{CD}
@> >> H_n(U\cap V)@> >> H_n(U)\oplus H_n(V) @> >> H_n(Y) @> >> H_{n-1}(U\cap V)@> >>
\end{CD}$

we get the result directly when $ n\geq 2$. If $ n = 1$ then necessarily $ k\geq 3$ and we look at the portion of the Mayer Vietoris sequence

$\displaystyle \begin{CD}
@> >> H_1(U\cap V)@> >> H_1(U)\oplus H_1(V) @> >> H_1(Y) @> >> H_0(U\cap V)@>{\cong} >> H_0(U)\oplus H_0(V).
\end{CD}$

Observe that $ H_1(U\cap V) = \{0\}$ and we get the exact sequence

$\displaystyle 0 \longrightarrow H_1(V)\longrightarrow H_1(Y) \longrightarrow 0,
$

establishing the result when $ n = 1$. $ \square$

The cases $ n = k, k-1$ are more technical and we shall merely state the relevant results.


nisha 2012-03-20