Proof:

If $ p = 0$ and $ \sigma$ is a zero chain then $ B\partial \sigma = 0$ whereas $ \partial B\sigma = \partial \sigma = 0.$ To handle the case $ p > 0$ we assume inductively that for any $ k-$chain $ \sigma$ with $ k\leq p-1$, the equation $ \partial B\sigma = B\partial \sigma$ holds. To prove it for $ p$ chains, let $ \sigma$ be an arbitrary affine $ p-$simplex. Equations (34.5) and (34.3) combine to give
$\displaystyle \partial B\sigma = \partial K_{\bf b}(B\partial \sigma) = B\parti...
...)
= B\partial \sigma - K_{\bf b}(B\partial \partial \sigma) = B\partial \sigma.$      

Note that induction hypothesis justifies $ \partial B\partial \sigma = B\partial \partial \sigma$. We have now shown that for every $ p$ chain $ \sigma$,

$\displaystyle B\partial \sigma = \partial B\sigma. \eqno(34.6)
$

We now construct a chain homotopy $ J:A_p(\Delta_n)\longrightarrow A_{p+1}(\Delta_n)$ between $ B$ and the identity map. Equation (34.3) suggests a formula of the type

$\displaystyle J\sigma = K_{\bf b}f(\sigma),
$

where $ {\bf b}$ is the barycenter of $ \sigma$ and $ f:A_p(\Delta_n)\longrightarrow A_p(\Delta_n)$ is to be determined. The condition that $ J$ is a chain homotopy between $ B$ and the identity now forces

$\displaystyle f(\sigma) - K_{\bf b}\partial f(\sigma) = B\sigma - \sigma - J(\partial \sigma). \eqno(34.7)
$

Clearly $ f(\sigma) = 0$ for a zero simplex $ \sigma$. If we assume inductively that $ J:A_k(\Delta_n)\longrightarrow A_{k+1}(\Delta_n)$ has already been defined for $ k\leq p-1$, the right hand side of (34.7) is then a known function. Let us refer to the term $ K_{\bf b}\partial f(\sigma)$ in equation (34.7) as junk. Exercise 3 invites the reader to check that retaining the junk term is unnecessary. We set it equal to zero and define formally for a $ p-$simplex $ \sigma$,

$\displaystyle J\sigma = \left\{\begin{array}{lll}
0 & & \mbox{ if } p = 0, \\
...
...sigma - J(\partial \sigma)) & & \mbox{ if } p \geq 1. \\
\end{array} \right.
$

Let us now verify that this formula does the job. The case $ p = 0$ is trivial and let us assume

$\displaystyle \partial J\sigma + J(\partial \sigma) = B\sigma - \sigma
$

for any $ k$ chain such that $ k\leq p-1$. Using the formula of $ J$ we see that

$\displaystyle \partial J\sigma = B\sigma - \sigma - J(\partial \sigma) - K_{\bf...
...\partial B\sigma - \partial \sigma - \partial J(\partial \sigma)). \eqno(34.8)
$

By induction hypothesis $ \partial J(\partial \sigma) = -J(\partial \partial \sigma) + B(\partial \sigma) - \partial \sigma$. Inserting this in (34.8) we get the desired result

$\displaystyle \partial J\sigma = B\sigma - \sigma - J(\partial \sigma). \eqno(34.9)
$

We shall now transfer the barycentric subdivision operator and the chain homotopy $ J$ to a chain map $ {\cal B}:S_p(X)\longrightarrow S_p(X)$ and a chain homotopy $ {\cal J}:S_p(X)\longrightarrow S_{p+1}(X)$. This will be unique subject to naturality.
nisha 2012-03-20