Definition 34.2:

The subdivision map $ B:A_p(\Delta_n)\longrightarrow A_p(\Delta_n)$ is defined inductively as follows:

(i) For a zero simplex $ \sigma$ we define $ B\sigma = \sigma$.

(ii) For $ p \geq 1$, we assume that $ B$ is defined on $ A_{k}(\Delta_n)$ for each $ k\leq p-1$. For a $ p-$simplex $ \sigma$ define

$\displaystyle B\sigma = K_{\bf b}(B(\partial \sigma)), \eqno(34.5)
$

the cone over the chain $ B(\partial \sigma)$ with apex $ {\bf b}$ as the barycenter of $ \sigma$.

nisha 2012-03-20