Proof:

Let $ \gamma_1$ and $ \gamma_2$ be two loops in $ X$ based at $ x_0$. We have to show that the one chain

$\displaystyle \gamma_1 + \gamma_2 - \gamma_1*\gamma_2
$

is a boundary of some singular two chain $ \sigma$. The idea behind the construction is simple. We first define a map $ {\tilde F}:I\times I\longrightarrow X$ whose restrictions to the four sides of the square are $ \gamma_1$, $ \gamma_2$, $ \varepsilon_{x_0}$ and $ \gamma_1 * \gamma_2$. As in the previous lemma we shall employ the maps $ T_1$, $ T_2$ to construct our two chain $ \sigma$.

We proceed as in lecture 7 by defining $ {\tilde F}$ from the boundary of $ I \times I$ to $ [0, 1]$, using Tietze's theorem to extend it to the whole of $ I \times I$ and then composing with $ \gamma_1 * \gamma_2$. So we define

$\displaystyle {\tilde F}(0, s)$ $\displaystyle =$ $\displaystyle \frac{s}{2}$  
$\displaystyle {\tilde F}(t, 1)$ $\displaystyle =$ $\displaystyle \frac{t+1}{2}$  
$\displaystyle {\tilde F}(t, 0)$ $\displaystyle =$ $\displaystyle t$  
$\displaystyle {\tilde F}(1, s)$ $\displaystyle =$ $\displaystyle 1$  

and extend it continuously to $ I \times I$. Let $ F:I\times I\longrightarrow X$ be given by $ F = (\gamma_1*\gamma_2)\circ {\tilde F}.$ The figure below depicts $ F$ along the boundary of $ I^2$:

in It is now an easy matter to verify that the boundary of the two chain $ \sigma$ given by

$\displaystyle \sigma = F\circ T_1 - F\circ T_2
$

is the one chain

$\displaystyle \gamma_1 + \gamma_2 - \varepsilon_{x_0} - \gamma_1*\gamma_2 \eqno(32.5)
$

Now, if $ \sigma^{\prime}:\Delta_2\longrightarrow X$ be the constant map taking value $ x_0$ then $ \partial \sigma^{\prime} = \varepsilon_{x_0}$ whereby we conclude that

$\displaystyle \gamma_1 + \gamma_2 - \gamma_1*\gamma_2 = \partial \sigma + \partial \sigma^{\prime}, \eqno(32.6)
$

which implies $ \Pi_{X}([\gamma_1][\gamma_2]) = \Pi_X([\gamma_1*\gamma_2]) = \Pi_X([\gamma_1]) + \Pi_X([\gamma_2])$. $ \square$
nisha 2012-03-20