Proof:

Let $ \gamma_1$ and $ \gamma_2$ be two homotopic loops based at $ x_0$ and let $ F:I\times I\longrightarrow X$ be the homotopy fixing the base point $ x_0$. Then $ \sigma_i = F\circ T_i$ ($ i = 1, 2$) are two singular two simplicies. It is an exercise to compute the boundary of these two singular simplicies and we find easily
$\displaystyle \partial (\sigma_1) = \partial (F\circ T_1) = \varepsilon_{x_0} + \gamma_1 - F(t, t)$      
$\displaystyle \partial (\sigma_2) = \partial (F\circ T_2) = \varepsilon_{x_0} + \gamma_2 - F(t, t).$      

The one chain $ \gamma_1-\gamma_2$ is the boundary of the two chain $ \sigma_1 - \sigma_2$ whence $ \overline{\gamma}_1 = \overline{\gamma}_2$.

nisha 2012-03-20