Definition 29.3 (Boundary of a singular simplex):

Given a singular $ n-$simplex $ \sigma:\Delta_n\longrightarrow X$, its $ j-$th singular boundary is the singular $ (n-1)$ simplex $ \sigma\circ \Phi_j^n$ and the boundary $ \partial _n\sigma$ of $ \sigma$ is then the $ (n-1)$ chain given by the algebraic sum of its singular faces:

$\displaystyle \partial _n\sigma = \sum_{j=0}^{n}(-1)^j(\sigma\circ \Phi_j^n). \eqno(29.4)
$

The map $ \partial _n$ then extends as a group homomorphism $ \sigma_n:S_n(X)\longrightarrow S_{n-1}(X)$. When $ n = 0$ we define the boundary map $ \partial _0$ to be the zero map.

The most important property of the maps $ \partial _n$ is the vanishing of $ \partial _{n-1}\circ\partial _n$ which we now prove.


nisha 2012-03-20