Proof:

We first define the associated maps $ h_1:X\longrightarrow X\sqcup_fB$ and $ h_2:X\longrightarrow X\sqcup_fB$. Let $ \eta:X\sqcup B\longrightarrow X\sqcup_fB$ be the quotient map and $ i_X:X\longrightarrow X\sqcup B$ and $ i_B:B\longrightarrow X\sqcup B$ denote the inclusions. Then the associated maps $ h_1$ and $ h_2$ given by

$\displaystyle h_1 = \eta\circ i_{X},\quad h_2 = \eta\circ i_{B}.\eqno(25.1)
$

For any $ a \in A$ we have

$\displaystyle h_1\circ i(a) = \eta(i_{X}(a)) = \eta(a),\quad h_2\circ f(a) = \eta(i_{B}(f(a))) = \eta(f(a))
$

Recalling the identifications we see that $ h_1\circ i = h_2\circ f$. We now check the universal property. Suppose $ Z$ is a topological space and $ g_1:X\longrightarrow Z$, $ g_2:B\longrightarrow Z$ are continuous maps such that

$\displaystyle g_1\circ i = g_2\circ f \eqno(25.2)
$

Define the continuous map $ \phi:X\sqcup B \longrightarrow Z$ as

$\displaystyle \phi(x) = \left\{\begin{array}{lll}
g_1(x) & & \mbox{if } x \in X \\
g_2(x) & & \mbox{if } x \in B. \\
\end{array} \right.
$

Condition (25.2) now shows that there is a unique map $ \overline{\phi}:(X\sqcup_fB)/\sim\;\longrightarrow Z$ such that

$\displaystyle \overline{\phi}\circ \eta = \phi. \eqno(25.3)
$

The universal property of the quotient implies that $ \overline{\phi}$ is continuous. Equations (25.1)-(25.3) immediately give

$\displaystyle \overline{\phi}\circ h_1 = g_1,\quad \overline{\phi}\circ h_2 = g_2.\eqno(25.4)
$

thereby completing the verification of the universal property.

nisha 2012-03-20