Definition 23.4:

Suppose given a pair of morphisms $ j_1:C\longrightarrow A_1$ and $ j_2:C\longrightarrow A_2$ in a category $ {\cal C}$, represented as a diagram:
$ \begin{CD}
C @> j_1 >> A_1 \\
@V{j_2}VV @. \\
A_2 @. \\
\end{CD}$
a push out is an object $ P$ in $ {\cal C}$ together with a pair of morphisms $ f_1:A_1\longrightarrow P$ and $ f_2:A_2\longrightarrow P$ satisfying the following two conditions:

(i) $ f_1\circ j_1 = f_2\circ j_2$

(ii) Universal property: Given any pair of morphisms $ g_1:A_1\longrightarrow E$ and $ g_2:A_2\longrightarrow E$ satisfying

$\displaystyle g_1\circ j_1 = g_2\circ j_2
$

there exists a unique morphism $ \phi:P\longrightarrow E$ such that

$\displaystyle \phi\circ f_1 = g_1,\quad \phi\circ f_2 = g_2.
$

in

nisha 2012-03-20