Proof:

We shall construct injective maps from $ p^{-1}(x_1)$ into $ p^{-1}(x_2)$ and vice versa. Fix a path $ \gamma$ in $ X$ joining $ x_1$ and $ x_2$. Pick $ {\tilde x}_1 \in p^{-1}(x_1)$ and let $ {\tilde\gamma}$ be the lift of $ \gamma$ starting at $ {\tilde x}_1$ and define a map $ T: p^{-1}(x_1)\longrightarrow p^{-1}(x_2)$ by the prescription

$\displaystyle T: {\tilde x}_1 \mapsto {\tilde \gamma}(1).
$

Likewise let $ S: p^{-1}(x_2)\longrightarrow p^{-1}(x_1)$ be the map in the reverse direction constructed using the path $ \gamma^{-1}$. Since the inverse path $ {\tilde \gamma^{-1}}$ is the unique lift of $ \gamma^{-1}$ starting at $ {\tilde \gamma}(1)$, we see that

$\displaystyle S({\tilde \gamma}(1)) = {\tilde \gamma}(0) = {\tilde x}_1,
$

whereby we conclude $ S\circ T$ is the identity map on $ p^{-1}(x_1)$. By symmetry $ T\circ S$ is the identity map on $ p^{-1}(x_2)$ as desired. $ \square$

nisha 2012-03-20