Proof for the case $ n = 2$:

We follow the elegant proof given in [17] (p. 109). We first show that any continuous function $ g:E^2\longrightarrow S^1$ maps a pair of antipodal points on the boundary of $ E^2$ to the same point. That is there exists $ z \in E^2$ such that $ \vert z\vert = 1$ and $ g(z) = g(-z)$. Since $ E^2$ is a compact convex set, by lemma (12.4) we see that any continuous map $ g:E^2\longrightarrow S^1$ has a continuous lift $ {\tilde g} : E^2 \longrightarrow \mathbb{R}$. Since the real valued map

$\displaystyle \theta\mapsto {\tilde g}(e^{2\pi i \theta}) - {\tilde g}(e^{-2\pi i \theta}),\quad 0\leq \theta \leq 1,
$

changes sign we see that there is a pair of antipodal points $ z, -z \in S^1$ such that $ {\tilde g}(z) = {\tilde g}(-z)$ and hence $ g(z) = g(-z)$. Turning now to a continuous map $ f:S^2\longrightarrow \mathbb{R}^2$, assume $ f({\bf x}) \neq f(-{\bf x})$ for every $ {\bf x} \in S^2$. We construct the continuous function $ g:E^2\longrightarrow S^1$

$\displaystyle g(z) = h(z)/\vert h(z)\vert
$

where

$\displaystyle h(x_1, x_2) = f(x_1, x_2, \sqrt{1-x_1^2-x_2^2}) - f(-x_1, -x_2, -\sqrt{1 - x_1^2 - x_2^2}),\quad (x_1, x_2) \in E^2.
$

Since $ \vert h(z)\vert = \vert h(-z)\vert$, we infer that there is no $ z \in E^2$ satisfying $ \vert z\vert = 1$ and $ g(z) = g(-z)$ resulting in a contradiction.

nisha 2012-03-20