Proof:

Let $ p_1$ and $ p_2$ be the usual projection maps $ X\times Y\longrightarrow X$ and $ X\times Y\longrightarrow Y$ respectively and $ \gamma$ be a loop in $ X\times Y$ based at $ (x_0, y_0)$. Then $ p_1\circ \gamma$ and $ p_2\circ \gamma$ are loops in $ X$ and $ Y$ based at $ x_0$ and $ y_0$ respectively. The map
$\displaystyle \phi:\pi_1(X\times Y, (x_0, y_0)) \longrightarrow \pi_1(X, x_0)\times \pi_1(Y, y_0)$      
$\displaystyle \phantom{}[\gamma] \mapsto ([p_1\circ \gamma], [p_2\circ \gamma]) \phantom{XXX}$      

is well-defined and easily seen to be a surjective group homomorphism. Injectivity is also easy to check. Well, suppose that $ [\gamma]$ is in the kernel of $ \phi$ then $ p_1\circ \gamma$ and $ p_2\circ \gamma$ are homotopic to the constant loops $ \varepsilon_{x_0}$ and $ \varepsilon_{y_0}$ respectively via homotopies $ F_1$ and $ F_2$. That is to say there exists continuous maps $ F_1:I^2 \longrightarrow X$ and $ F_2:I^2 \longrightarrow Y$ such that

$\displaystyle F_1(0, t) = p_1\circ\gamma, F_1(1, t) = \varepsilon_{x_0},
F_2(0, t) = p_2\circ\gamma, F_2(1, t) = \varepsilon_{y_0}.
$

and $ F_1(s, 0) = F_1(s, 1) = x_0$, $ F_2(s, 0) = F_2(s, 1) = y_0$ for all $ s\in [0,1]$. Putting these together we get a continuous map $ F_1\times F_2:I^2\longrightarrow X\times Y$ namely

$\displaystyle (s, t)\mapsto (F_1(s, t), F_2(s, t))
$

which is a homotopy between $ \gamma$ and the constant loop at $ (x_0, y_0)$ proving that the kernel is trivial.
nisha 2012-03-20