Theorem 7.9:

Suppose $ \gamma_0^\prime, \gamma_0^{\prime \prime}$ are two paths joining $ x_1$ and $ x_2$ and $ h^\prime, h^{\prime \prime}$ are the corresponding group isomorphisms from $ \pi_1(X,x_1) \longrightarrow \pi_1(X,x_2)$ given by the previous theorem. Then there exists an inner automorphism

$\displaystyle \sigma : \pi_1(X,x_2) \longrightarrow \pi_1(X,x_2)
$

such that $ h^\prime= \sigma \circ h^{\prime \prime}.$ In fact $ \sigma$ is the inner automorphism determined by $ [\gamma_0^\prime][\gamma_0^{\prime \prime}]^{-1}.$

If $ \pi_1(X, x_0)$ is abelian then $ \pi_1(X, x_0)$ and $ \pi_1(X,x_1)$ are naturally isomorphic. That is the isomorphism $ h_{[\sigma]}$ is canonical in this case.


nisha 2012-03-20