Proof:

Let $ \sigma$ be a path joining $ x_1$    and $ x_2$. Observe that if $ \gamma$ is a loop at the $ x_1$ then $ \sigma \ast \gamma \ast \sigma^{-1}$ is a loop at $ x_2$ thereby enabling us to define a map
$\displaystyle h_{[\sigma]} :\;$   $\displaystyle \pi_1(X,x_1) \longrightarrow \pi_1(X,x_2)$  
    $\displaystyle [\gamma]\;\mapsto [\sigma \ast \gamma \ast \sigma^{-1}].$  

in Corollary (7.4) shows that the function is well defined and lemma (7.5) shows that it is a group homomorphism. Let $ \Gamma$ be a loop at $ x_2.$ Then $ \sigma^{-1} \ast \Gamma \ast \sigma$ is a loop at $ x_1$ and $ h_{[\sigma]}([\sigma^{-1} \ast \Gamma \ast \sigma])=[\Gamma]$ showing that $ h_{[\sigma]}$ is surjective. The map

$\displaystyle h_{[\sigma^{-1}]}:[\Gamma] \longrightarrow [\sigma^{-1} \ast \Gamma \ast \sigma]
$

is the inverse of $ h_{[\sigma]}$. $ \square$

nisha 2012-03-20