Module 12:Application of stochastic processes in areas of engineering and management science
  Lecture 40:Use of Markov Chain Monte Carlo Method
 

Results using MCMC
Using MCMC we obtain the average values of , variance and bias for the GE distribution. We also report the bootstrap values of the confidence intervals. For calculating the average values of  we consider a sample size n of 200 and conduct 200 runs for all the models. Thus in Table 12.1, 12.2 we report our simulation runs results using MCMC method.

Table 12.1: Average values, variance and bias of

GED complete data without EM and using MCMC

 

=1

 =2

=1.5

Average

1.009

2.001

1.501

Variance

0.009

0.027

0.016

Bias

0.073

0.134

0.097

 

 

 

 

GED incomplete data without EM and using MCMC

 

=1

 =2

=1.5

Average

1.010

1.999

1.521

Variance

0.008

0.023

0.009

Bias

0.074

0.126

0.080

Table 12.2: Bootstrap-1 and bootstrap-1 confidence intervals for ,  and  for both complete and masked data using EM algorithm and without EM algorithm and using MCMC

GED incomplete data without using EM and using MCMC

 

Bootstrap-1

1.053(0.842)

2.164(0.898)

1.894(0.869)

Bootstrap-2

0.910 (0.827)

2.053(0.853)

1.667(0.784)



GED incomplete data using EM and using MCMC

 

Bootstrap-1

1.063(0.835)

2.413(0.872)

2.149(0.838)

Bootstrap-2

0.861(0.827)

2.218(0.847)

2.051(0.816)