Examples

Ex30-1 A closed traverse was run among stations P, Q, R,S and T having following observation :

Stations (1)

Sides (2)

IncludedAngle (3)

Length ( li ) m

Remarks

X

 

 

 

Sign convension: for

Clockwise interior angle + ve

Anti-Clockwise interior angle - ve

Azimuth of

PX = 43° 31' 30"

TY = 106° 17' 30"

 

PX

 

 

P

 

104° 00' 30"

 

 

PQ

 

305.41

Q

 

63° 20'

 

 

QR

 

359.61

R

 

-101° 49'

 

 

RS

 

612.15

S

 

120° 45'

 

 

ST

 

485.12

T

 

-123° 29' 30"

 

 

TY

 

 

 

Y

 

 

 

 

It is given that the independent coordinates of the stations P and T are (2346.839 , 3157.148 ) and ( 3644.678, 3321.881 ) respectively. Find the adjusted coordinates of the stations using Gale's Traverse table

Solution : Table 30.1 Gale's Traverse Table (Figure 30.1)

Stations

(1)

Sides

(2)

Length

(L)

m (3)

Included Angle

(4)

Correction

(5)

Corrected angle

(6)

WCB

(7)

Consecutive coordinates, m (8)

Bowditch Correction (9)

Corrected Consecutive Coordinates

Corrected Independent Coordinates

Departure

(D)

Latitude

(L)

Departure
Latitude
Departure
Latitude
Xi
Yi
X
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PX
 
 
 
 
43° 31' 30"
 
 
 
 
 
 
 
 
P
 
 
104° 00' 30"
-12"
104° 00' 18"
 
 
 
 
 
 
 
2346.633
3157.148
 
PQ
305.41
 
 
 
147° 31' 48"
163.962
-257.666
0.052
0.033
164.014
-257.633
 
 
Q
 
 
63° 20"
-12"
63° 19' 48"
 
 
 
 
 
 
 
2510.835
2899.515
 
QR
359.61
 
 
 
30° 51' 36"
184.459
308.698
0.060
0.039
184.519
308.737
 
 
R
 
 
-101° 49'
-12"
-101° 49' 12"
 
 
 
 
 
 
 
2695.372
3208.618
 
RS
612.15
 
 
 
109° 02' 24"
578.660
-199.700
0.104
0.066
578.764
-199.634
 
 
S
 
 
120° 45'
-12"
120° 44' 48"
 
 
 
 
 
 
 
3274.136
3008.618
 
ST
485.12
 
 
 
49° 47' 12"
370.460
313.210
0.082
0.053
370.542
313.262
 
 
T
 
 
-123° 29' 30"
-12"
-123° 29' 42"
 
 
 
 
 
 
 
3644.678
3321.881
 
TY
 
 
 
 
106° 17' 30"
 
 
 
 
 
 
 
 
Y
 
 
 
 
 
 
 
 
 
 
 
 
 
 
S
 
1762.29
62° 47' 00"
 
 
 
1297.541
162.542
0.298
0.191
 
 
 
 

Error = (S Interior included angle - S Exterior included angle) - (Azimuth of last line - Azimuth of first line)

= (288° 05' 30" - 225° 18' 30") - (106° 17' 30" - 43° 31' 30")

= 62° 47' 00" - 62° 46' 00" = + 1'

Closure corrections = = 0.354m

Therefore, corection = - 1'

= 32° 39' 26".70

Therefore, Azimuth of closure correction = 57° 20' 33".30

<< Back | Next >>