Compression and Consolidation of Soils
Print this page
First  |  Last  |  Prev  |  Next

When a soil layer is subjected to vertical stress, volume change can take place through rearrangement of soil grains, and some amount of grain fracture may also take place. The volume of soil grains remains constant, so change in total volume is due to change in volume of water. In saturated soils, this can happen only if water is pushed out of the voids. The movement of water takes time and is controlled by the permeability of the soil and the locations of free draining boundary surfaces.

It is necessary to determine both the magnitude of volume change (or the settlement) and the time required for the volume change to occur. The magnitude of settlement is dependent on the magnitude of applied stress, thickness of the soil layer, and the compressibility of the soil.

When soil is loaded undrained, the pore pressure increases. As the excess pore pressure dissipates and water leaves the soil, settlement takes place. This process takes time, and the rate of settlement decreases over time. In coarse soils (sands and gravels), volume change occurs immediately as pore pressures are dissipated rapidly due to high permeability. In fine soils (silts and clays), slow seepage occurs due to low permeability.


Components of Total Settlement
The total settlement of a loaded soil has three components: Elastic settlement, primary consolidation, and secondary compression.

Elastic settlement is on account of change in shape at constant volume, i.e. due to vertical compression and lateral expansion. Primary consolidation (or simply consolidation) is on account of flow of water from the voids, and is a function of the permeability and compressibility of soil. Secondary compression is on account of creep-like behaviour.

Primary consolidation is the major component and it can be reasonably estimated. A general theory for consolidation, incorporating three-dimensional flow is complicated and only applicable to a very limited range of problems in geotechnical engineering. For the vast majority of practical settlement problems, it is sufficient to consider that both seepage and strain take place in one direction only, as one-dimensional consolidation in the vertical direction.

First  |  Last  |  Prev  |  Next