Module Name | Download |
---|---|
noc21_mg77_assignment_Week_0 | noc21_mg77_assignment_Week_0 |
noc21_mg77_assignment_Week_1 | noc21_mg77_assignment_Week_1 |
noc21_mg77_assignment_Week_10 | noc21_mg77_assignment_Week_10 |
noc21_mg77_assignment_Week_11 | noc21_mg77_assignment_Week_11 |
noc21_mg77_assignment_Week_2 | noc21_mg77_assignment_Week_2 |
noc21_mg77_assignment_Week_3 | noc21_mg77_assignment_Week_3 |
noc21_mg77_assignment_Week_4 | noc21_mg77_assignment_Week_4 |
noc21_mg77_assignment_Week_5 | noc21_mg77_assignment_Week_5 |
noc21_mg77_assignment_Week_6 | noc21_mg77_assignment_Week_6 |
noc21_mg77_assignment_Week_7 | noc21_mg77_assignment_Week_7 |
noc21_mg77_assignment_Week_8 | noc21_mg77_assignment_Week_8 |
noc21_mg77_assignment_Week_9 | noc21_mg77_assignment_Week_9 |
noc21_mg77assignment_Week12 | noc21_mg77assignment_Week12 |
Sl.No | Chapter Name | MP4 Download |
---|---|---|
1 | Lecture 01: Overview of Module 01 & Introduction of Causality | Download |
2 | Lecture 02: Correlation and Causality | Download |
3 | Lecture 03: Correlation and Causality (Contd.) | Download |
4 | Lecture 04: Correlation and Causality (Contd.) | Download |
5 | Lecture 05: Probability Theory | Download |
6 | Lecture 06: Probability Theory (Contd.) | Download |
7 | Lecture 07: Probability Theory (Contd.) | Download |
8 | Lecture 08: Probability Theory (Contd.) | Download |
9 | Lecture 09: Posterior Probability | Download |
10 | Lecture 10: Bayesian Theorem | Download |
11 | Lecture 11: Bayesian Theorem (Contd.): Repeated Trial | Download |
12 | Lecture 12: Bayesian Theorem (Contd.): Example of Diamond Identification | Download |
13 | Lecture 13: Probability Distribution | Download |
14 | Lecture 14: Double Structure of Variable | Download |
15 | Lecture 15: Probability Distribution (Discrete/Continuous Variable) Random Variable | Download |
16 | Lecture 16: Probability Mass Function (PMF) Probability Density Function (PDF)" | Download |
17 | Lecture 17: Expectation, Variance, Covariance | Download |
18 | Lecture 18: Expectation, Variance, Covariance (Contd.) | Download |
19 | Lecture 19: Covariance Rule | Download |
20 | Lecture 20: Bernoulli Distribution | Download |
21 | Lecture 21: Bernoulli Distribution (Contd.) | Download |
22 | Lecture 22: Normal Approximation of Bernoulli Distribution | Download |
23 | Lecture 23: Sampling | Download |
24 | Lecture 24: Sampling (Contd.) | Download |
25 | Lecture 25: Central Limit Theorem | Download |
26 | Lecture 26: Law of Large Numbers LLN | Download |
27 | Lecture 27: Properties of Estimator | Download |
28 | Lecture 28: Conflict Between Unbiasedness and Min Variance | Download |
29 | Lecture 29: T - Distribution | Download |
30 | Lecture 30: Normal Distribution | Download |
31 | Lecture 31: Normal Distribution (Contd.) | Download |
32 | Lecture 32: Hypothesis Testing | Download |
33 | Lecture 33: Decision Rules | Download |
34 | Lecture 34: Level of Significance | Download |
35 | Lecture 35: P Value | Download |
36 | Lecture 36: Power of a Test | Download |
37 | Lecture 37: Confidence Interval | Download |
38 | Lecture 38: Confidence Interval Example | Download |
39 | Lecture 39: Properties of Power of a Test | Download |
40 | Lecture 40: Introduction to Module II | Download |
41 | Lecture 41: Error Term, Coefficient of Determination, Regression Coefficient | Download |
42 | Lecture 42: Error Term, Coefficient of Determination, Regression Coefficient (Contd.) | Download |
43 | Lecture 43: Error Term, Coefficient of Determination, Regression Coefficient (Contd.) | Download |
44 | Lecture 44: Definition : Variable, Parameter and Coefficient | Download |
45 | Lecture 45: Introduction to Regression: Recapitulating Correlation and Causal Thinking | Download |
46 | Lecture 46: Adjusted R-Squared | Download |
47 | Lecture 47: Degrees of Freedom | Download |
48 | Lecture 48: Multiple Regression | Download |
49 | Lecture 49: Multiple Regression (Contd.) | Download |
50 | Lecture 50: Regression Table | Download |
51 | Lecture 51: Regression Table (Contd.) | Download |
52 | Lecture 52: Multicollinearity | Download |
53 | Lecture 53: Multicollinearity (Contd.) | Download |
54 | Lecture 54: Multicollinearity (Contd.) | Download |
55 | Lecture 55: Multicollinearity (Contd.) | Download |
56 | Lecture 56: Multicollinearity (Contd.) | Download |
57 | Lecture 57: Dummy Variable | Download |
58 | Lecture 58: Dummy variable (Contd.) | Download |
59 | Lecture 59: Dummy variable (Contd.) | Download |
60 | Lecture 60: Dummy variable (Contd.) | Download |
61 | Lecture 61: Dummy variable (Contd.) | Download |
62 | Lecture 62: Dummy variable (Contd.) | Download |
63 | Lecture 63: Dummy variable (Contd.) | Download |
64 | Lecture 64: Heteroscedasticity | Download |
65 | Lecture 65: Heteroscedasticity (Contd.) | Download |
66 | Lecture 66 : Heteroscedasticity (Contd.) | Download |
67 | Lecture 67 : Heteroscedasticity (Contd.) | Download |
68 | Lecture 68 : Heteroscedasticity (Contd.) | Download |
69 | Lecture 69 : Heteroscedasticity (Contd.) | Download |
70 | Lecture 70: Autocorrelation | Download |
71 | Lecture 71: Autocorrelation (Contd.) | Download |
72 | Lecture 72: Autocorrelation (Contd.) | Download |
73 | Lecture 73: Autocorrelation (Contd.) | Download |
74 | Lecture 74: Autocorrelation (Contd.) | Download |
75 | Lecture 75: Autocorrelation (Contd.) | Download |
76 | Lecture 76: Autocorrelation (Contd.) | Download |
77 | Lecture 77: Autocorrelation (Contd.) | Download |
78 | Lecture 78: Autocorrelation (Contd.) | Download |
79 | Lecture 79: Autocorrelation (Contd.) | Download |
80 | Lecture 80: Autocorrelation (Contd.) | Download |
81 | Lecture 81: Autocorrelation (Contd.) | Download |
82 | Lecture 82: Remedy for Autocorrelation | Download |
83 | Lecture 83: Model Specification | Download |
84 | Lecture 84: Model Specification (Contd.) | Download |
85 | Lecture 85: Model Specification (Contd.) | Download |
86 | Lecture 86: Model Specification (Contd.) | Download |
87 | Lecture 87: Model Specification (Contd.) | Download |
88 | Lecture 88: Model Specification (Contd.) | Download |
89 | Lecture 89: Model Specification (Contd.) | Download |
90 | Lecture 90: Model Specification (Contd.) | Download |
91 | Lecture 91 : Continuation with Proxy Variable | Download |
92 | Lecture 92: Ramsey Reset Test | Download |
93 | Lecture 93 : Introduction to Module III | Download |
94 | Lecture 94 : Non Stochastic Regressor | Download |
95 | Lecture 95 : Stochastic Regressor | Download |
96 | Lecture 96 : Assumptions for Regression Models with Non-Stochastic Regressor | Download |
97 | Lecture 97 : Assumptions for Regression Model with Stochastic Regressor | Download |
98 | Lecture 98 : Instrumental Variable | Download |
99 | Lecture 99 : Instrumental Variable (Contd.) | Download |
100 | Lecture 100: Asymptotic Property | Download |
101 | Lecture 101: Problem of Endogeneity | Download |
102 | Lecture 102: Simultaneous Equation Model | Download |
103 | Lecture 103: Instrumental Variable for Endogeneity Bias Problem | Download |
104 | Lecture 104: Good Bad and Weak Instrumental Variable | Download |
105 | Lecture 105 : Overidentification Underidentification Exact Identification - Instrumental Variable | Download |
106 | Lecture 106 : Two Stage Least Square and Instrumental Variable | Download |
107 | Lecture 107 : 2SLS and IV with Stata | Download |
Sl.No | Chapter Name | English |
---|---|---|
1 | Lecture 01: Overview of Module 01 & Introduction of Causality | Download Verified |
2 | Lecture 02: Correlation and Causality | PDF unavailable |
3 | Lecture 03: Correlation and Causality (Contd.) | Download Verified |
4 | Lecture 04: Correlation and Causality (Contd.) | Download Verified |
5 | Lecture 05: Probability Theory | Download Verified |
6 | Lecture 06: Probability Theory (Contd.) | Download Verified |
7 | Lecture 07: Probability Theory (Contd.) | Download Verified |
8 | Lecture 08: Probability Theory (Contd.) | Download Verified |
9 | Lecture 09: Posterior Probability | Download Verified |
10 | Lecture 10: Bayesian Theorem | Download Verified |
11 | Lecture 11: Bayesian Theorem (Contd.): Repeated Trial | Download Verified |
12 | Lecture 12: Bayesian Theorem (Contd.): Example of Diamond Identification | Download Verified |
13 | Lecture 13: Probability Distribution | Download Verified |
14 | Lecture 14: Double Structure of Variable | Download Verified |
15 | Lecture 15: Probability Distribution (Discrete/Continuous Variable) Random Variable | Download Verified |
16 | Lecture 16: Probability Mass Function (PMF) Probability Density Function (PDF)" | Download Verified |
17 | Lecture 17: Expectation, Variance, Covariance | Download Verified |
18 | Lecture 18: Expectation, Variance, Covariance (Contd.) | Download Verified |
19 | Lecture 19: Covariance Rule | Download Verified |
20 | Lecture 20: Bernoulli Distribution | Download Verified |
21 | Lecture 21: Bernoulli Distribution (Contd.) | PDF unavailable |
22 | Lecture 22: Normal Approximation of Bernoulli Distribution | PDF unavailable |
23 | Lecture 23: Sampling | PDF unavailable |
24 | Lecture 24: Sampling (Contd.) | PDF unavailable |
25 | Lecture 25: Central Limit Theorem | PDF unavailable |
26 | Lecture 26: Law of Large Numbers LLN | PDF unavailable |
27 | Lecture 27: Properties of Estimator | PDF unavailable |
28 | Lecture 28: Conflict Between Unbiasedness and Min Variance | PDF unavailable |
29 | Lecture 29: T - Distribution | PDF unavailable |
30 | Lecture 30: Normal Distribution | PDF unavailable |
31 | Lecture 31: Normal Distribution (Contd.) | PDF unavailable |
32 | Lecture 32: Hypothesis Testing | PDF unavailable |
33 | Lecture 33: Decision Rules | PDF unavailable |
34 | Lecture 34: Level of Significance | PDF unavailable |
35 | Lecture 35: P Value | PDF unavailable |
36 | Lecture 36: Power of a Test | PDF unavailable |
37 | Lecture 37: Confidence Interval | PDF unavailable |
38 | Lecture 38: Confidence Interval Example | PDF unavailable |
39 | Lecture 39: Properties of Power of a Test | PDF unavailable |
40 | Lecture 40: Introduction to Module II | PDF unavailable |
41 | Lecture 41: Error Term, Coefficient of Determination, Regression Coefficient | PDF unavailable |
42 | Lecture 42: Error Term, Coefficient of Determination, Regression Coefficient (Contd.) | PDF unavailable |
43 | Lecture 43: Error Term, Coefficient of Determination, Regression Coefficient (Contd.) | PDF unavailable |
44 | Lecture 44: Definition : Variable, Parameter and Coefficient | PDF unavailable |
45 | Lecture 45: Introduction to Regression: Recapitulating Correlation and Causal Thinking | PDF unavailable |
46 | Lecture 46: Adjusted R-Squared | PDF unavailable |
47 | Lecture 47: Degrees of Freedom | PDF unavailable |
48 | Lecture 48: Multiple Regression | PDF unavailable |
49 | Lecture 49: Multiple Regression (Contd.) | PDF unavailable |
50 | Lecture 50: Regression Table | PDF unavailable |
51 | Lecture 51: Regression Table (Contd.) | PDF unavailable |
52 | Lecture 52: Multicollinearity | PDF unavailable |
53 | Lecture 53: Multicollinearity (Contd.) | PDF unavailable |
54 | Lecture 54: Multicollinearity (Contd.) | PDF unavailable |
55 | Lecture 55: Multicollinearity (Contd.) | PDF unavailable |
56 | Lecture 56: Multicollinearity (Contd.) | PDF unavailable |
57 | Lecture 57: Dummy Variable | PDF unavailable |
58 | Lecture 58: Dummy variable (Contd.) | PDF unavailable |
59 | Lecture 59: Dummy variable (Contd.) | PDF unavailable |
60 | Lecture 60: Dummy variable (Contd.) | PDF unavailable |
61 | Lecture 61: Dummy variable (Contd.) | PDF unavailable |
62 | Lecture 62: Dummy variable (Contd.) | PDF unavailable |
63 | Lecture 63: Dummy variable (Contd.) | PDF unavailable |
64 | Lecture 64: Heteroscedasticity | PDF unavailable |
65 | Lecture 65: Heteroscedasticity (Contd.) | PDF unavailable |
66 | Lecture 66 : Heteroscedasticity (Contd.) | PDF unavailable |
67 | Lecture 67 : Heteroscedasticity (Contd.) | PDF unavailable |
68 | Lecture 68 : Heteroscedasticity (Contd.) | PDF unavailable |
69 | Lecture 69 : Heteroscedasticity (Contd.) | PDF unavailable |
70 | Lecture 70: Autocorrelation | PDF unavailable |
71 | Lecture 71: Autocorrelation (Contd.) | PDF unavailable |
72 | Lecture 72: Autocorrelation (Contd.) | PDF unavailable |
73 | Lecture 73: Autocorrelation (Contd.) | PDF unavailable |
74 | Lecture 74: Autocorrelation (Contd.) | PDF unavailable |
75 | Lecture 75: Autocorrelation (Contd.) | PDF unavailable |
76 | Lecture 76: Autocorrelation (Contd.) | PDF unavailable |
77 | Lecture 77: Autocorrelation (Contd.) | PDF unavailable |
78 | Lecture 78: Autocorrelation (Contd.) | PDF unavailable |
79 | Lecture 79: Autocorrelation (Contd.) | PDF unavailable |
80 | Lecture 80: Autocorrelation (Contd.) | PDF unavailable |
81 | Lecture 81: Autocorrelation (Contd.) | PDF unavailable |
82 | Lecture 82: Remedy for Autocorrelation | PDF unavailable |
83 | Lecture 83: Model Specification | PDF unavailable |
84 | Lecture 84: Model Specification (Contd.) | PDF unavailable |
85 | Lecture 85: Model Specification (Contd.) | PDF unavailable |
86 | Lecture 86: Model Specification (Contd.) | PDF unavailable |
87 | Lecture 87: Model Specification (Contd.) | PDF unavailable |
88 | Lecture 88: Model Specification (Contd.) | PDF unavailable |
89 | Lecture 89: Model Specification (Contd.) | PDF unavailable |
90 | Lecture 90: Model Specification (Contd.) | PDF unavailable |
91 | Lecture 91 : Continuation with Proxy Variable | PDF unavailable |
92 | Lecture 92: Ramsey Reset Test | PDF unavailable |
93 | Lecture 93 : Introduction to Module III | PDF unavailable |
94 | Lecture 94 : Non Stochastic Regressor | PDF unavailable |
95 | Lecture 95 : Stochastic Regressor | PDF unavailable |
96 | Lecture 96 : Assumptions for Regression Models with Non-Stochastic Regressor | PDF unavailable |
97 | Lecture 97 : Assumptions for Regression Model with Stochastic Regressor | PDF unavailable |
98 | Lecture 98 : Instrumental Variable | PDF unavailable |
99 | Lecture 99 : Instrumental Variable (Contd.) | PDF unavailable |
100 | Lecture 100: Asymptotic Property | PDF unavailable |
101 | Lecture 101: Problem of Endogeneity | PDF unavailable |
102 | Lecture 102: Simultaneous Equation Model | PDF unavailable |
103 | Lecture 103: Instrumental Variable for Endogeneity Bias Problem | PDF unavailable |
104 | Lecture 104: Good Bad and Weak Instrumental Variable | PDF unavailable |
105 | Lecture 105 : Overidentification Underidentification Exact Identification - Instrumental Variable | PDF unavailable |
106 | Lecture 106 : Two Stage Least Square and Instrumental Variable | PDF unavailable |
107 | Lecture 107 : 2SLS and IV with Stata | PDF unavailable |
Sl.No | Language | Book link |
---|---|---|
1 | English | Not Available |
2 | Bengali | Not Available |
3 | Gujarati | Not Available |
4 | Hindi | Not Available |
5 | Kannada | Not Available |
6 | Malayalam | Not Available |
7 | Marathi | Not Available |
8 | Tamil | Not Available |
9 | Telugu | Not Available |