Course Name: Principles of Signals and Systems

Course abstract

This course is introduces the fundamental principles of signals and system analysis. These concepts form the building blocks of modern digital signal processing, communication and control systems. Hence, a sound understanding of these principles is necessary for all students of Electronics and Communication engineering (ECE), Electrical and Electronics Engineering (EEE), and Instrumentation Engineering (IE). The course will cover various basic tools of signal and system analysis such as signal classification, LTI systems, Properties of LTI Systems, Frequency Response, Laplace Transform, Z-Transform, Fourier Transform, Fourier Series, Discrete Time Fourier Transform (DTFT), Discrete Fourier Transform (DFT), Cascade/ Parallel structures and their various practical applications. Various concepts such as convolution, impulse/ frequency response, causality, stability of systems will be especially emphasized. Other additional topics such as state space techniques and solutions to state space equations will also be covered. This course is suitable for all UG/PG students and practicing engineers/ managers who are looking to build a solid grasp of the fundamental concepts of signals and systems as well as students/ professionals preparing for their college/ university/ competitive exams.


Course Instructor

Media Object

Prof. Aditya K. Jagannatham

Prof. Aditya K. Jagannatham received his Bachelors degree from the Indian Institute of Technology, Bombay and M.S. and Ph.D. degrees from the University of California, San Diego, U.S.A. From April 07 to May09 he was employed as a senior wireless systems engineer at Qualcomm Inc., San Diego, California, where he was a part of the Qualcomm CDMA technologies (QCT) division. His research interests are in the area of next-generation wireless cellular and WiFi networks, with special emphasis on various 5G technologies such as massive MIMO, mmWave MIMO, FBMC, NOMA, Full Duplex and others. He has contributed to the 802.11n high throughput wireless LAN standard and has published extensively in leading international journals and conferences. He was awarded the CAL(IT)2 fellowship at the University of California San Diego and the Upendra Patel Achievement Award at Qualcomm. He is currently a Professor in the Electrical Engineering department at IIT Kanpur, where he holds the Arun Kumar Chair Professorship, and is also associated with the BSNL-IITK Telecom Center of Excellence(BITCOE). He has been twice awarded the P.K. Kelkar Young Faculty Research Fellowship for excellence in research, the Qualcomm Innovation Fellowship (QInF) and the IIT Kanpur Excellence in Teaching Award. His popular video lectures for the NPTEL(National Programme on Technology Enhanced Learning) course on Advanced 3G and 4G Wireless Mobile Communications can found at the following YouTube link ( NPTEL 3G/4G ). He has also successfully conducted several Massive Open Online Courses (MOOCs) on various topics such as Applied Game Theory, MIMO OFDM Wireless Systems, Probability and Random Processes, Signals and Systems, Principles of Communication Systems, which have been widely adopted and appreciated. A book authored by him titled Principles of Modern Wireless Communications Systems has been published by McGraw Hill Education and comprehensively covers several key aspects of modern wireless technologies.
More info

Teaching Assistant(s)

No teaching assistant data available for this course yet
 Course Duration : Jan-Apr 2022

  View Course

 Enrollment : 14-Nov-2021 to 31-Jan-2022

 Exam registration : 13-Dec-2021 to 18-Mar-2022

 Exam Date : 24-Apr-2022

Enrolled

Will be announced

Registered

Will be announced

Certificate Eligible

Will be announced

Certified Category Count

Gold

Will be announced

Silver

Will be announced

Elite

Will be announced

Successfully completed

Will be announced

Participation

Will be announced

Success

Elite

Gold





Legend

Final Score Calculation Logic

Enrollment Statistics

Total Enrollment: 3946

Assignment Statistics




Score Distribution Graph - Legend

Assignment Score: Distribution of average scores garnered by students per assignment.
Exam Score : Distribution of the final exam score of students.
Final Score : Distribution of the combined score of assignments and final exam, based on the score logic.