Modules / Lectures


Sl.No Chapter Name MP4 Download
1mod01lec01 - Introduction to TopologyDownload
2mod01lec02 - Basic Set theoryDownload
3mod01lec03 - Mathematical Logic - Part 1Download
4mod01lec04 - Mathematical Logic - Part 2Download
5mod01lec05 - FunctionsDownload
6mod01lec06 - Finite Sets - Part 1Download
7mod01lec07 - Finite Sets - Part 2Download
8mod01lec08 - Infinite SetsDownload
9mod01lec09 - Infinite Sets and Axiom of ChoiceDownload
10mod02lec10 - Definition of aTopologyDownload
11mod02lec11 - Examples of different topologies:Download
12mod02lec12 - Basis for a topologyDownload
13mod02lec13 - Various topologies on the real lineDownload
14mod02lec14 - Comparison of topologies - Part 1 : Finer and coarser topologiesDownload
15mod02lec15 - Comparison of topologies - Part 2: Comparing the various topologies on RDownload
16mod02lec16 - Basis and Sub-basis for a topologyDownload
17mod03lec17 - Various topologies: the subspace topologyDownload
18mod02lec18 - The Product topologyDownload
19mod02lec19 - Topologies on arbitrary Cartesian productsDownload
20mod02lec20 - Metric topology - Part 1Download
21mod03lec21 - Metric topology - Part 2Download
22mod03lec22 - Metric topology - Part 3Download
23mod04lec23 - Closed SetsDownload
24mod04lec24 - Closure and Limit pointsDownload
25mod04lec25 - Continuous functionsDownload
26mod04lec26 - Construction of continuous functionsDownload
27mod04lec27 - Continuous functions on metric spaces - Part 1Download
28mod04lec28 - Continuous functions on metric spaces - Part 2Download
29mod05lec29 - ConnectednessDownload
30mod05lec30 - Some conditions for ConnectednessDownload
31mod05lec31 - Connectedness of the Real LineDownload
32mod05lec32 - Connectedness of a Linear ContinuumDownload
33mod05lec33 - The Intermediate Value TheoremDownload
34mod06lec34 - Path-connectednessDownload
35mod06lec35 - Connectedness does not imply Path-connectedness - Part 1Download
36mod06lec36 - Connectedness does not imply Path-connectedness - Part 2Download
37mod06lec37 - Connected and Path-connected ComponentsDownload
38mod06lec38 - Local connectedness and Local Path-connectednessDownload
39mod07lec39 - CompactnessDownload
40mod07lec40 - Properties of compact spacesDownload
41mod07lec41 - The Heine-Borel TheoremDownload
42mod07lec42 - Tychonoff't theoremDownload
43mod07lec43 - Proof of Tychonoff's theorem - Part 1Download
44mod07lec44 - Proof of Tychonoff's theorem - Part 2Download
45mod08lec45 - Compactness in metric spacesDownload
46mod08lec46 - Lebesgue Number Lemma and the Uniform Continuity theoremDownload
47mod08lec47 - Different Kinds of CompactnessDownload
48mod08lec48 - Equivalence of various compactness properties for Metric SpacesDownload
49mod08lec49 - Compactness and Sequential Compactness in arbitrary topological spacesDownload
50mod09lec50 - Baire SpacesDownload
51mod09lec51 - Properties and Examples of Baire SpacesDownload
52mod09lec52 - The Baire Category TheoremDownload
53mod09lec53 - Complete Metric Spaces and the Baire Category theorem - Part 1Download
54mod09lec54 - Complete Metric Spaces and the Baire Category theorem - Part 2Download
55mod09lec55 - Application of the Baire Category theoremDownload
56mod10lec56 - Regular and Normal spacesDownload
57mod10lec57 - Properties and examples of regular and normal spacesDownload
58mod10lec58 - Urysohn's LemmaDownload
59mod10lec59 - Proof of Urysohn's LemmaDownload
60mod10lec60 - Tietze Extension theorem - Part 1Download
61mod10lec61 - Tietze Extension theorem - Part 2Download
62mod11lec62 - Compactness and Completeness in Metric spacesDownload
63mod11lec63 - The space of continuous functions - Part 1Download
64mod11lec64 - The space of continuous functions - Part 2Download
65mod11lec65 - EquicontinuityDownload
66mod11lec66 - Total boundedness and Equicontinuity - Part 1Download
67mod11lec67 - Total boundedness and Equicontinuity - Part 2Download
68mod12lec68 - Topology of compact convergence - Part 1Download
69mod12lec69 - Topology of compact convergence - Part 2Download
70mod12lec70 - Equicontinuity revisited - Part 1Download
71mod12lec71 - Equicontinuity revisited - Part 2Download
72mod12lec72 - Locally compact Hausdorff spacesDownload
73mod12lec73 - The Arzelà- Ascoli theoremDownload

Sl.No Chapter Name English
1mod01lec01 - Introduction to TopologyPDF unavailable
2mod01lec02 - Basic Set theoryPDF unavailable
3mod01lec03 - Mathematical Logic - Part 1PDF unavailable
4mod01lec04 - Mathematical Logic - Part 2PDF unavailable
5mod01lec05 - FunctionsPDF unavailable
6mod01lec06 - Finite Sets - Part 1PDF unavailable
7mod01lec07 - Finite Sets - Part 2PDF unavailable
8mod01lec08 - Infinite SetsPDF unavailable
9mod01lec09 - Infinite Sets and Axiom of ChoicePDF unavailable
10mod02lec10 - Definition of aTopologyPDF unavailable
11mod02lec11 - Examples of different topologies:PDF unavailable
12mod02lec12 - Basis for a topologyPDF unavailable
13mod02lec13 - Various topologies on the real linePDF unavailable
14mod02lec14 - Comparison of topologies - Part 1 : Finer and coarser topologiesPDF unavailable
15mod02lec15 - Comparison of topologies - Part 2: Comparing the various topologies on RPDF unavailable
16mod02lec16 - Basis and Sub-basis for a topologyPDF unavailable
17mod03lec17 - Various topologies: the subspace topologyPDF unavailable
18mod02lec18 - The Product topologyPDF unavailable
19mod02lec19 - Topologies on arbitrary Cartesian productsPDF unavailable
20mod02lec20 - Metric topology - Part 1PDF unavailable
21mod03lec21 - Metric topology - Part 2PDF unavailable
22mod03lec22 - Metric topology - Part 3PDF unavailable
23mod04lec23 - Closed SetsPDF unavailable
24mod04lec24 - Closure and Limit pointsPDF unavailable
25mod04lec25 - Continuous functionsPDF unavailable
26mod04lec26 - Construction of continuous functionsPDF unavailable
27mod04lec27 - Continuous functions on metric spaces - Part 1PDF unavailable
28mod04lec28 - Continuous functions on metric spaces - Part 2PDF unavailable
29mod05lec29 - ConnectednessPDF unavailable
30mod05lec30 - Some conditions for ConnectednessPDF unavailable
31mod05lec31 - Connectedness of the Real LinePDF unavailable
32mod05lec32 - Connectedness of a Linear ContinuumPDF unavailable
33mod05lec33 - The Intermediate Value TheoremPDF unavailable
34mod06lec34 - Path-connectednessPDF unavailable
35mod06lec35 - Connectedness does not imply Path-connectedness - Part 1PDF unavailable
36mod06lec36 - Connectedness does not imply Path-connectedness - Part 2PDF unavailable
37mod06lec37 - Connected and Path-connected ComponentsPDF unavailable
38mod06lec38 - Local connectedness and Local Path-connectednessPDF unavailable
39mod07lec39 - CompactnessPDF unavailable
40mod07lec40 - Properties of compact spacesPDF unavailable
41mod07lec41 - The Heine-Borel TheoremPDF unavailable
42mod07lec42 - Tychonoff't theoremPDF unavailable
43mod07lec43 - Proof of Tychonoff's theorem - Part 1PDF unavailable
44mod07lec44 - Proof of Tychonoff's theorem - Part 2PDF unavailable
45mod08lec45 - Compactness in metric spacesPDF unavailable
46mod08lec46 - Lebesgue Number Lemma and the Uniform Continuity theoremPDF unavailable
47mod08lec47 - Different Kinds of CompactnessPDF unavailable
48mod08lec48 - Equivalence of various compactness properties for Metric SpacesPDF unavailable
49mod08lec49 - Compactness and Sequential Compactness in arbitrary topological spacesPDF unavailable
50mod09lec50 - Baire SpacesPDF unavailable
51mod09lec51 - Properties and Examples of Baire SpacesPDF unavailable
52mod09lec52 - The Baire Category TheoremPDF unavailable
53mod09lec53 - Complete Metric Spaces and the Baire Category theorem - Part 1PDF unavailable
54mod09lec54 - Complete Metric Spaces and the Baire Category theorem - Part 2PDF unavailable
55mod09lec55 - Application of the Baire Category theoremPDF unavailable
56mod10lec56 - Regular and Normal spacesPDF unavailable
57mod10lec57 - Properties and examples of regular and normal spacesPDF unavailable
58mod10lec58 - Urysohn's LemmaPDF unavailable
59mod10lec59 - Proof of Urysohn's LemmaPDF unavailable
60mod10lec60 - Tietze Extension theorem - Part 1PDF unavailable
61mod10lec61 - Tietze Extension theorem - Part 2PDF unavailable
62mod11lec62 - Compactness and Completeness in Metric spacesPDF unavailable
63mod11lec63 - The space of continuous functions - Part 1PDF unavailable
64mod11lec64 - The space of continuous functions - Part 2PDF unavailable
65mod11lec65 - EquicontinuityPDF unavailable
66mod11lec66 - Total boundedness and Equicontinuity - Part 1PDF unavailable
67mod11lec67 - Total boundedness and Equicontinuity - Part 2PDF unavailable
68mod12lec68 - Topology of compact convergence - Part 1PDF unavailable
69mod12lec69 - Topology of compact convergence - Part 2PDF unavailable
70mod12lec70 - Equicontinuity revisited - Part 1PDF unavailable
71mod12lec71 - Equicontinuity revisited - Part 2PDF unavailable
72mod12lec72 - Locally compact Hausdorff spacesPDF unavailable
73mod12lec73 - The Arzelà- Ascoli theoremPDF unavailable


Sl.No Language Book link
1EnglishNot Available
2BengaliNot Available
3GujaratiNot Available
4HindiNot Available
5KannadaNot Available
6MalayalamNot Available
7MarathiNot Available
8TamilNot Available
9TeluguNot Available