Modules / Lectures


Sl.No Chapter Name MP4 Download
1Lecture 1: Introduction on functions of a single variableDownload
2Lecture 2: Basic definitionsDownload
3Lecture 3: Mean value TheoremsDownload
4Lecture 4: Extremum of function of single variableDownload
5Lecture 5: ExamplesDownload
6Lecture 6: Introduction on functions of two variableDownload
7Lecture 7: Basic definitionsDownload
8Lecture 8: Partial differentiationDownload
9Lecture 9: Extremum of function of two variableDownload
10Lecture 10: ExamplesDownload
11Lecture 11: Convergence and divergence testDownload
12Lecture 12: Beta function, Gamma functionDownload
13Lecture 13: Differentiation under integral signDownload
14Lecture 14: Line integral, integration in R^2 (Double integral)Download
15Lecture 15: ExamplesDownload
16Lecture 23: Iterative method (bisection and fixed point)Download
17Lecture 24: Newton-Raphson, Jacobi and Gauss-Seidel methodDownload
18Lecture 25: Finite difference methodDownload
19Lecture 26: Newton’s forward and backward interpolationDownload
20Lecture 27: Numerical integrationDownload
21Lecture 28: Vector space and SubspaceDownload
22Lecture 29: Basis and dimensionDownload
23Lecture 30: Rank of a matrixDownload
24Lecture 31: Gauss-Elimination MethodDownload
25Lecture 32: Linear TransformationDownload
26Lecture 33: ExamplesDownload
27Lecture 34: Matrix RepresentationDownload
28Lec 35: Eigenvalues and EigenvectorsDownload
29Lecture 36: Cayley-Hamilton TheoremDownload
30Lecture 37: Diagonalisation of a MatrixDownload
31Lecture 38: Examples and applicationsDownload
32Lecture 39: Types of matricesDownload
33Lecture 40: Equivalent Matrices and Elementary MatricesDownload
34Lecture 41: Introduction to the vector functionDownload
35Lecture 42: Differentiation and integration of the vector functionDownload
36Lecture 43: Partial differentiation of vector functionDownload
37Lecture 44: Directional derivative of a vector functionDownload
38Lecture 45: Examples on directional derivative, tangent plane and normalDownload
39Lecture 46: Divergence and curl of a vector functionDownload
40Lecture 47: Application to mechanics of vector calculusDownload
41Lecture 48: Serret-Frenet formula and more applications to mechanicsDownload
42Lecture 49: Examples on finding unit vectors, curvature and torsionDownload
43Lecture 50: Application of vector calculus to the particle dynamicsDownload
44Lecture 51: Line integral of vector functionDownload
45Lecture 52: Surface integral of vector functionDownload
46Lecture 53: Volume integral of vector function and Gauss Divergence TheoremDownload
47Lecture 54: Green's theorem and Stoke's theoremDownload
48Lecture 55: Verification and application of Divergencen theorem, Green's theorem and Stoke's theoremDownload
49Lecture 56: Basic properties of a complex valued functionDownload
50Lecture 57: Analytic Complex valued functionDownload
51Lecture 58: Complex Integration and theoremsDownload
52Lecture 59: Application of Cauchy's integral formulaDownload
53Lecture 60: Regular and Singular point of a complex valued functionDownload

Sl.No Chapter Name English
1Lecture 1: Introduction on functions of a single variablePDF unavailable
2Lecture 2: Basic definitionsPDF unavailable
3Lecture 3: Mean value TheoremsPDF unavailable
4Lecture 4: Extremum of function of single variablePDF unavailable
5Lecture 5: ExamplesPDF unavailable
6Lecture 6: Introduction on functions of two variablePDF unavailable
7Lecture 7: Basic definitionsPDF unavailable
8Lecture 8: Partial differentiationPDF unavailable
9Lecture 9: Extremum of function of two variablePDF unavailable
10Lecture 10: ExamplesPDF unavailable
11Lecture 11: Convergence and divergence testPDF unavailable
12Lecture 12: Beta function, Gamma functionPDF unavailable
13Lecture 13: Differentiation under integral signPDF unavailable
14Lecture 14: Line integral, integration in R^2 (Double integral)PDF unavailable
15Lecture 15: ExamplesPDF unavailable
16Lecture 23: Iterative method (bisection and fixed point)PDF unavailable
17Lecture 24: Newton-Raphson, Jacobi and Gauss-Seidel methodPDF unavailable
18Lecture 25: Finite difference methodPDF unavailable
19Lecture 26: Newton’s forward and backward interpolationPDF unavailable
20Lecture 27: Numerical integrationPDF unavailable
21Lecture 28: Vector space and SubspacePDF unavailable
22Lecture 29: Basis and dimensionPDF unavailable
23Lecture 30: Rank of a matrixPDF unavailable
24Lecture 31: Gauss-Elimination MethodPDF unavailable
25Lecture 32: Linear TransformationPDF unavailable
26Lecture 33: ExamplesPDF unavailable
27Lecture 34: Matrix RepresentationPDF unavailable
28Lec 35: Eigenvalues and EigenvectorsPDF unavailable
29Lecture 36: Cayley-Hamilton TheoremPDF unavailable
30Lecture 37: Diagonalisation of a MatrixPDF unavailable
31Lecture 38: Examples and applicationsPDF unavailable
32Lecture 39: Types of matricesPDF unavailable
33Lecture 40: Equivalent Matrices and Elementary MatricesPDF unavailable
34Lecture 41: Introduction to the vector functionPDF unavailable
35Lecture 42: Differentiation and integration of the vector functionPDF unavailable
36Lecture 43: Partial differentiation of vector functionPDF unavailable
37Lecture 44: Directional derivative of a vector functionPDF unavailable
38Lecture 45: Examples on directional derivative, tangent plane and normalPDF unavailable
39Lecture 46: Divergence and curl of a vector functionPDF unavailable
40Lecture 47: Application to mechanics of vector calculusPDF unavailable
41Lecture 48: Serret-Frenet formula and more applications to mechanicsPDF unavailable
42Lecture 49: Examples on finding unit vectors, curvature and torsionPDF unavailable
43Lecture 50: Application of vector calculus to the particle dynamicsPDF unavailable
44Lecture 51: Line integral of vector functionPDF unavailable
45Lecture 52: Surface integral of vector functionPDF unavailable
46Lecture 53: Volume integral of vector function and Gauss Divergence TheoremPDF unavailable
47Lecture 54: Green's theorem and Stoke's theoremPDF unavailable
48Lecture 55: Verification and application of Divergencen theorem, Green's theorem and Stoke's theoremPDF unavailable
49Lecture 56: Basic properties of a complex valued functionPDF unavailable
50Lecture 57: Analytic Complex valued functionPDF unavailable
51Lecture 58: Complex Integration and theoremsPDF unavailable
52Lecture 59: Application of Cauchy's integral formulaPDF unavailable
53Lecture 60: Regular and Singular point of a complex valued functionPDF unavailable


Sl.No Language Book link
1EnglishNot Available
2BengaliNot Available
3GujaratiNot Available
4HindiNot Available
5KannadaNot Available
6MalayalamNot Available
7MarathiNot Available
8TamilNot Available
9TeluguNot Available