Modules / Lectures

Sl.No Chapter Name English
1Lecture 01 : Rolle’s TheoremDownload
Verified
2Lecture 02 : Mean Value TheoremDownload
Verified
3Lecture 03 : Taylor’s Formula (Single Variable)Download
Verified
4Lecture 04 : Indeterminate Forms – Part 01PDF unavailable
5Lecture 05 : Indeterminate Forms – Part 02PDF unavailable
6Lecture 06 : Introduction to LimitDownload
Verified
7Lecture 07 : Evaluation of LimitDownload
Verified
8Lecture 08 : ContinuityDownload
Verified
9Lecture 09 : First Order Partial DerivativesDownload
Verified
10Lecture 10 : Higher Order Partial DerivativesDownload
Verified
11Lecture 11 : Differentiability Part 1PDF unavailable
12Lecture 12 : Differentiability Part 2PDF unavailable
13Lecture 13 : Differentiability Part 3PDF unavailable
14Lecture 14 : Differentiability Part 4PDF unavailable
15Lecture 15 : Composite & Homogeneous FunctionsPDF unavailable
16Lecture 16 : Taylor’s Theorem (Multivariable)Download
Verified
17Lecture 17 : Maxima & Minima – Part 1Download
Verified
18Lecture 18 : Maxima & Minima – Part 2Download
Verified
19Lecture 19 : Maxima & Minima – Part 3Download
Verified
20Lecture 20 : Maxima & Minima – Part 4Download
Verified
21Lecture 21 : Formation of Differential EquationsPDF unavailable
22Lecture 22 : First Order and First Degree DEPDF unavailable
23Lecture 23 : Exact Differential EquationsPDF unavailable
24Lecture 24 : Integrating FactorPDF unavailable
25Lecture 25 : Linear Differential EquationsPDF unavailable
26Lecture 26 : Introduction to Higher Order DEsDownload
Verified
27Lecture 27 : Complementary FunctionDownload
Verified
28Lecture 28 : Particular IntegralDownload
Verified
29Lecture 29 : Cauchy-Euler EquationsDownload
Verified
30Lecture 30 : Method of Variation of ParametersDownload
Verified
31Lecture 31 : Improper Integral – Part 1PDF unavailable
32Lecture 32 : Improper Integral – Part 2PDF unavailable
33Lecture 33 : Improper Integral – Part 3PDF unavailable
34Lecture 34 : Improper Integral – Part 4PDF unavailable
35Lecture 35 : Beta & Gamma Function – Part 1PDF unavailable
36Lecture 36 : Beta & Gamma Function – Part 2PDF unavailable
37Lecture 37 : Differentiation under the Integral SignPDF unavailable
38Lecture 38 : Double Integrals – Part 1PDF unavailable
39Lecture 39 : Double Integrals – Part 2PDF unavailable
40Lecture 40 : Double Integrals – Part 3PDF unavailable
41Lecture 41 : Double Integrals – Part 4PDF unavailable
42Lecture 42 : Double Integrals – Part 5PDF unavailable
43Lecture 43 : Double Integrals – Part 6PDF unavailable
44Lecture 44 : Triple Integrals – Part 1PDF unavailable
45Lecture 45 : Triple Integrals – Part 2PDF unavailable
46Lecture 46 : Vector FunctionsPDF unavailable
47Lecture 47 : Vector and Scalar FieldsPDF unavailable
48Lecture 48 : Divergence and Curl of a Vector FieldPDF unavailable
49Lecture 49 : Line IntegralsPDF unavailable
50Lecture 50 : Conservative Vector FieldsPDF unavailable
51Lecture 51 : Green’s TheoremPDF unavailable
52Lecture 52 : Surface Integral (Part - 1)PDF unavailable
53Lecture 53 : Surface Integrals (Part - 2)PDF unavailable
54Lecture 54 : Stokes’ TheoremPDF unavailable
55Lecture 55 : Divergence TheoremPDF unavailable
56Lecture 56 : Application of DerivativesPDF unavailable
57Lecture 57 : Application of Derivatives-ContinuedPDF unavailable
58Lecture 58 : Properties of Gradient, Divergence and CurlPDF unavailable
59Lecture 59 : Properties of Gradient, Divergence and Curl-ContinuedPDF unavailable
60Lecture 60 : Curl and IntegralsPDF unavailable


Sl.No Language Book link
1EnglishNot Available
2BengaliNot Available
3GujaratiNot Available
4HindiNot Available
5KannadaNot Available
6MalayalamNot Available
7MarathiNot Available
8TamilNot Available
9TeluguNot Available