Modules / Lectures


Sl.No Chapter Name MP4 Download
1Lecture 01 : Rolle’s TheoremDownload
2Lecture 02 : Mean Value TheoremDownload
3Lecture 03 : Taylor’s Formula (Single Variable)Download
4Lecture 04 : Indeterminate Forms – Part 01Download
5Lecture 05 : Indeterminate Forms – Part 02Download
6Lecture 06 : Introduction to LimitDownload
7Lecture 07 : Evaluation of LimitDownload
8Lecture 08 : ContinuityDownload
9Lecture 09 : First Order Partial DerivativesDownload
10Lecture 10 : Higher Order Partial DerivativesDownload
11Lecture 11 : Differentiability – Part 1Download
12Lecture 12 : Differentiability – Part 2Download
13Lecture 13 : Differentiability – Part 3Download
14Lecture 14 : Differentiability – Part 4Download
15Lecture 15 : Composite & Homogeneous FunctionsDownload
16Lecture 16 : Taylor’s Theorem (Multivariable)Download
17Lecture 17 : Maxima & Minima – Part 1Download
18Lecture 18 : Maxima & Minima – Part 2Download
19Lecture 19 : Maxima & Minima – Part 3Download
20Lecture 20 : Maxima & Minima – Part 4Download
21Lecture 21 : Formation of Differential EquationsDownload
22Lecture 22 : First Order and First Degree DEDownload
23Lecture 23 : Exact Differential EquationsDownload
24Lecture 24 : Integrating FactorDownload
25Lecture 25 : Linear Differential EquationsDownload
26Lecture 26 : Introduction to Higher Order DEsDownload
27Lecture 27 : Complementary FunctionDownload
28Lecture 28 : Particular IntegralDownload
29Lecture 29 : Cauchy-Euler EquationsDownload
30Lecture 30 : Method of Variation of ParametersDownload
31Lecture 31 : Improper Integral – Part 1Download
32Lecture 32 : Improper Integral – Part 2Download
33Lecture 33 : Improper Integral – Part 3Download
34Lecture 34 : Improper Integral – Part 4Download
35Lecture 35 : Beta & Gamma Function – Part 1Download
36Lecture 36 : Beta & Gamma Function – Part 2Download
37Lecture 37 : Differentiation under the Integral SignDownload
38Lecture 38 : Double Integrals – Part 1Download
39Lecture 39 : Double Integrals – Part 2Download
40Lecture 40 : Double Integrals – Part 3Download

Sl.No Chapter Name English
1Lecture 01 : Rolle’s TheoremPDF unavailable
2Lecture 02 : Mean Value TheoremPDF unavailable
3Lecture 03 : Taylor’s Formula (Single Variable)PDF unavailable
4Lecture 04 : Indeterminate Forms – Part 01PDF unavailable
5Lecture 05 : Indeterminate Forms – Part 02PDF unavailable
6Lecture 06 : Introduction to LimitPDF unavailable
7Lecture 07 : Evaluation of LimitPDF unavailable
8Lecture 08 : ContinuityPDF unavailable
9Lecture 09 : First Order Partial DerivativesPDF unavailable
10Lecture 10 : Higher Order Partial DerivativesPDF unavailable
11Lecture 11 : Differentiability – Part 1PDF unavailable
12Lecture 12 : Differentiability – Part 2PDF unavailable
13Lecture 13 : Differentiability – Part 3PDF unavailable
14Lecture 14 : Differentiability – Part 4PDF unavailable
15Lecture 15 : Composite & Homogeneous FunctionsPDF unavailable
16Lecture 16 : Taylor’s Theorem (Multivariable)PDF unavailable
17Lecture 17 : Maxima & Minima – Part 1PDF unavailable
18Lecture 18 : Maxima & Minima – Part 2PDF unavailable
19Lecture 19 : Maxima & Minima – Part 3PDF unavailable
20Lecture 20 : Maxima & Minima – Part 4PDF unavailable
21Lecture 21 : Formation of Differential EquationsPDF unavailable
22Lecture 22 : First Order and First Degree DEPDF unavailable
23Lecture 23 : Exact Differential EquationsPDF unavailable
24Lecture 24 : Integrating FactorPDF unavailable
25Lecture 25 : Linear Differential EquationsPDF unavailable
26Lecture 26 : Introduction to Higher Order DEsPDF unavailable
27Lecture 27 : Complementary FunctionPDF unavailable
28Lecture 28 : Particular IntegralPDF unavailable
29Lecture 29 : Cauchy-Euler EquationsPDF unavailable
30Lecture 30 : Method of Variation of ParametersPDF unavailable
31Lecture 31 : Improper Integral – Part 1PDF unavailable
32Lecture 32 : Improper Integral – Part 2PDF unavailable
33Lecture 33 : Improper Integral – Part 3PDF unavailable
34Lecture 34 : Improper Integral – Part 4PDF unavailable
35Lecture 35 : Beta & Gamma Function – Part 1PDF unavailable
36Lecture 36 : Beta & Gamma Function – Part 2PDF unavailable
37Lecture 37 : Differentiation under the Integral SignPDF unavailable
38Lecture 38 : Double Integrals – Part 1PDF unavailable
39Lecture 39 : Double Integrals – Part 2PDF unavailable
40Lecture 40 : Double Integrals – Part 3PDF unavailable


Sl.No Language Book link
1EnglishNot Available
2BengaliNot Available
3GujaratiNot Available
4HindiNot Available
5KannadaNot Available
6MalayalamNot Available
7MarathiNot Available
8TamilNot Available
9TeluguNot Available