Sl.No | Chapter Name | MP4 Download |
---|---|---|
1 | Week 1 : Lecture 1 : Introduction | Download |
2 | Week 1 : Lecture 2 : Mathematical Preliminaries: Taylor Approximation | Download |
3 | Week 1 : Lecture 3 : Mathematical Preliminaries: Order of Convergence | Download |
4 | Week 1 : Lecture 4 : Arithmetic Error: Floating-point Approximation | Download |
5 | Week 1 : Lecture 5 : Arithmetic Error: Significant Digits | Download |
6 | Week 1 : Lecture 6 : Arithmetic Error: Condition Number and Stable Computation | Download |
7 | Week 2 : Lecture 7 : Tutorial Session - 1: Problem Solving | Download |
8 | Week 2 : Lecture 8 : Python Coding: Introduction | Download |
9 | Week 2 : Lecture 9 : Linear Systems: Gaussian Elimination Method | Download |
10 | Week 2 : Lecture 10 : Linear Systems: LU-Factorization (Doolittle and Crout) | Download |
11 | Week 2 : Lecture 11 : Linear Systems: LU-Factorization (Cholesky) | Download |
12 | Week 3 : Lecture 12 : Linear Systems: Operation Count for Direct Methods | Download |
13 | Week 3 : Lecture 13 : Tutorial Session - 2: Python Coding for Naive Gaussian Elimination Method | Download |
14 | Week 3 : Lecture 14 : Tutorial Session - 3: Python Coding for Thomas Algorithm | Download |
15 | Week 3 : Lecture 15 : Matrix Norms: Subordinate Matrix Norms | Download |
16 | Week 3 : Lecture 16 : Matrix Norms: Condition Number of a Matrix | Download |
17 | Week 5 : Lecture 22 : Tutorial Session - 4: Python implementation of Jacobi Method | Download |
18 | Week 5 : Lecture 23 : Eigenvalues and Eigenvectors: Power Method (Construction) | Download |
19 | Week 5 : Lecture 24 : Eigenvalues and Eigenvectors: Power Method (Convergence Theorem) | Download |
20 | Week 5 : Lecture 25 : Eigenvalues and Eigenvectors: Gerschgorin's Theorem and Applications | Download |
21 | Week 5 : Lecture 26 : Eigenvalues and Eigenvectors: Power Method (Inverse and Shifted Methods) | Download |
22 | Week 6 : Lecture 27 : Nonlinear Equations: Overview | Download |
23 | Week 6 : Lecture 28 : Nonlinear Equations: Bisection Method | Download |
24 | Week 6 : Lecture 29 : Tutorial Session - 5: Implementation of Bisection Method | Download |
25 | Week 6 : Lecture 30 : Nonlinear Equations: Regula-falsi and Secant Methods | Download |
26 | Week 6 : Lecture 31 : Nonlinear Equations: Convergence Theorem of Secant Method | Download |
27 | Week 7 : Lecture 32 : Nonlinear Equations: Newton-Raphson's method | Download |
28 | Week 7 : Lecture 33 : Nonlinear Equations: Newton-Raphson's method (Convergence Theorem) | Download |
29 | Week 7 : Lecture 34 : Nonlinear Equations: Fixed-point Iteration Methods | Download |
30 | Lecture 35:Nonlinear Equations: Fixed-point Iteration Methods (Convergence)&Modified Newton's Method | Download |
31 | Week 7 : Lecture 36 : Nonlinear Equations: System of Nonlinear Equations | Download |
32 | Week 8 : Lecture 37 : Nonlinear Equations: Implementation of Newton-Raphson's Method as Python Code | Download |
33 | Week 8 : Lecture 38 : Polynomial Interpolation: Existence and Uniqueness | Download |
34 | Week 8 : Lecture 39 : Polynomial Interpolation: Lagrange and Newton Forms | Download |
35 | Week 8 : Lecture 40 : Polynomial Interpolation: Newton’s Divided Difference Formula | Download |
36 | Week 8 : Lecture 41 : Polynomial Interpolation: Mathematical Error in Interpolating Polynomial | Download |
37 | Week 9 : Lecture 42 : Polynomial Interpolation: Arithmetic Error in Interpolating Polynomials | Download |
38 | Week 9 : Lecture 43 : Polynomial Interpolation: Implementation of Lagrange Form as Python Code | Download |
39 | Week 9 : Lecture 44: Polynomial Interpolation: Runge Phenomenon & Piecewise Polynomial Interpolation | Download |
40 | Week 9 : Lecture 45 : Polynomial Interpolation: Hermite Interpolation | Download |
41 | Week 9 : Lecture 46 : Polynomial Interpolation: Cubic Spline Interpolation | Download |
42 | Week 10 : Lecture 47 : Polynomial Interpolation: Tutorial Session | Download |
43 | Week 10 : Lecture 48 : Numerical Integration: Rectangle Rule | Download |
44 | Week 10 : Lecture 49 : Numerical Integration: Trapezoidal Rule | Download |
45 | Lecture 50 : Numerical Integration: Simpson's Rule | Download |
46 | Week 10 : Lecture 51 : Numerical Integration: Gaussian Quadrature Rule | Download |
47 | Week 11 : Lecture 52 : Numerical Integration: Tutorial Session | Download |
48 | Week 11 : Lecture 53 : Numerical Differentiation: Primitive Finite Difference Formulae | Download |
49 | Lecture 54 : Numerical Differentiation: Method of Undetermined Coefficients and Arithmetic Error | Download |
50 | Week 11 : Lecture 55 : Numerical ODEs: Euler Methods | Download |
51 | Week 11 : Lecture 56 : Numerical ODEs: Euler Methods (Error Analysis) | Download |
52 | Week 12 : Lecture 57 : Numerical ODEs: Runge-Kutta Methods | Download |
53 | Week 12 : Lecture 58 : Numerical ODEs: Modified Euler's Methods | Download |
54 | Week 12 : Lecture 59 : Numerical ODEs: Multistep Methods | Download |
55 | Week 12 : Lecture 60 : Numerical ODEs: Stability Analysis | Download |
56 | Week 12 : Lecture 61 : Numerical ODEs: Two-point Boundary Value Problems | Download |
Sl.No | Chapter Name | English |
---|---|---|
1 | Week 1 : Lecture 1 : Introduction | Download Verified |
2 | Week 1 : Lecture 2 : Mathematical Preliminaries: Taylor Approximation | Download Verified |
3 | Week 1 : Lecture 3 : Mathematical Preliminaries: Order of Convergence | Download Verified |
4 | Week 1 : Lecture 4 : Arithmetic Error: Floating-point Approximation | Download Verified |
5 | Week 1 : Lecture 5 : Arithmetic Error: Significant Digits | Download Verified |
6 | Week 1 : Lecture 6 : Arithmetic Error: Condition Number and Stable Computation | Download Verified |
7 | Week 2 : Lecture 7 : Tutorial Session - 1: Problem Solving | Download Verified |
8 | Week 2 : Lecture 8 : Python Coding: Introduction | Download Verified |
9 | Week 2 : Lecture 9 : Linear Systems: Gaussian Elimination Method | Download Verified |
10 | Week 2 : Lecture 10 : Linear Systems: LU-Factorization (Doolittle and Crout) | Download Verified |
11 | Week 2 : Lecture 11 : Linear Systems: LU-Factorization (Cholesky) | Download Verified |
12 | Week 3 : Lecture 12 : Linear Systems: Operation Count for Direct Methods | Download Verified |
13 | Week 3 : Lecture 13 : Tutorial Session - 2: Python Coding for Naive Gaussian Elimination Method | Download Verified |
14 | Week 3 : Lecture 14 : Tutorial Session - 3: Python Coding for Thomas Algorithm | Download Verified |
15 | Week 3 : Lecture 15 : Matrix Norms: Subordinate Matrix Norms | PDF unavailable |
16 | Week 3 : Lecture 16 : Matrix Norms: Condition Number of a Matrix | PDF unavailable |
17 | Week 5 : Lecture 22 : Tutorial Session - 4: Python implementation of Jacobi Method | PDF unavailable |
18 | Week 5 : Lecture 23 : Eigenvalues and Eigenvectors: Power Method (Construction) | PDF unavailable |
19 | Week 5 : Lecture 24 : Eigenvalues and Eigenvectors: Power Method (Convergence Theorem) | PDF unavailable |
20 | Week 5 : Lecture 25 : Eigenvalues and Eigenvectors: Gerschgorin's Theorem and Applications | PDF unavailable |
21 | Week 5 : Lecture 26 : Eigenvalues and Eigenvectors: Power Method (Inverse and Shifted Methods) | PDF unavailable |
22 | Week 6 : Lecture 27 : Nonlinear Equations: Overview | PDF unavailable |
23 | Week 6 : Lecture 28 : Nonlinear Equations: Bisection Method | PDF unavailable |
24 | Week 6 : Lecture 29 : Tutorial Session - 5: Implementation of Bisection Method | PDF unavailable |
25 | Week 6 : Lecture 30 : Nonlinear Equations: Regula-falsi and Secant Methods | PDF unavailable |
26 | Week 6 : Lecture 31 : Nonlinear Equations: Convergence Theorem of Secant Method | PDF unavailable |
27 | Week 7 : Lecture 32 : Nonlinear Equations: Newton-Raphson's method | PDF unavailable |
28 | Week 7 : Lecture 33 : Nonlinear Equations: Newton-Raphson's method (Convergence Theorem) | PDF unavailable |
29 | Week 7 : Lecture 34 : Nonlinear Equations: Fixed-point Iteration Methods | PDF unavailable |
30 | Lecture 35:Nonlinear Equations: Fixed-point Iteration Methods (Convergence)&Modified Newton's Method | PDF unavailable |
31 | Week 7 : Lecture 36 : Nonlinear Equations: System of Nonlinear Equations | PDF unavailable |
32 | Week 8 : Lecture 37 : Nonlinear Equations: Implementation of Newton-Raphson's Method as Python Code | PDF unavailable |
33 | Week 8 : Lecture 38 : Polynomial Interpolation: Existence and Uniqueness | PDF unavailable |
34 | Week 8 : Lecture 39 : Polynomial Interpolation: Lagrange and Newton Forms | PDF unavailable |
35 | Week 8 : Lecture 40 : Polynomial Interpolation: Newton’s Divided Difference Formula | PDF unavailable |
36 | Week 8 : Lecture 41 : Polynomial Interpolation: Mathematical Error in Interpolating Polynomial | PDF unavailable |
37 | Week 9 : Lecture 42 : Polynomial Interpolation: Arithmetic Error in Interpolating Polynomials | PDF unavailable |
38 | Week 9 : Lecture 43 : Polynomial Interpolation: Implementation of Lagrange Form as Python Code | PDF unavailable |
39 | Week 9 : Lecture 44: Polynomial Interpolation: Runge Phenomenon & Piecewise Polynomial Interpolation | PDF unavailable |
40 | Week 9 : Lecture 45 : Polynomial Interpolation: Hermite Interpolation | PDF unavailable |
41 | Week 9 : Lecture 46 : Polynomial Interpolation: Cubic Spline Interpolation | PDF unavailable |
42 | Week 10 : Lecture 47 : Polynomial Interpolation: Tutorial Session | PDF unavailable |
43 | Week 10 : Lecture 48 : Numerical Integration: Rectangle Rule | PDF unavailable |
44 | Week 10 : Lecture 49 : Numerical Integration: Trapezoidal Rule | PDF unavailable |
45 | Lecture 50 : Numerical Integration: Simpson's Rule | PDF unavailable |
46 | Week 10 : Lecture 51 : Numerical Integration: Gaussian Quadrature Rule | PDF unavailable |
47 | Week 11 : Lecture 52 : Numerical Integration: Tutorial Session | PDF unavailable |
48 | Week 11 : Lecture 53 : Numerical Differentiation: Primitive Finite Difference Formulae | PDF unavailable |
49 | Lecture 54 : Numerical Differentiation: Method of Undetermined Coefficients and Arithmetic Error | PDF unavailable |
50 | Week 11 : Lecture 55 : Numerical ODEs: Euler Methods | PDF unavailable |
51 | Week 11 : Lecture 56 : Numerical ODEs: Euler Methods (Error Analysis) | PDF unavailable |
52 | Week 12 : Lecture 57 : Numerical ODEs: Runge-Kutta Methods | PDF unavailable |
53 | Week 12 : Lecture 58 : Numerical ODEs: Modified Euler's Methods | PDF unavailable |
54 | Week 12 : Lecture 59 : Numerical ODEs: Multistep Methods | PDF unavailable |
55 | Week 12 : Lecture 60 : Numerical ODEs: Stability Analysis | PDF unavailable |
56 | Week 12 : Lecture 61 : Numerical ODEs: Two-point Boundary Value Problems | PDF unavailable |
Sl.No | Language | Book link |
---|---|---|
1 | English | Not Available |
2 | Bengali | Not Available |
3 | Gujarati | Not Available |
4 | Hindi | Not Available |
5 | Kannada | Not Available |
6 | Malayalam | Not Available |
7 | Marathi | Not Available |
8 | Tamil | Not Available |
9 | Telugu | Not Available |