Modules / Lectures


Sl.No Chapter Name MP4 Download
1Lecture 1 : Symmetry point group: IntroductionDownload
2Lecture 2 : Symmetry point group: Examples Part IDownload
3Lecture 3 : Symmetry point group: Examples Part IIDownload
4Lecture 4 : Symmetry point group: Examples Part IIIDownload
5Lecture 5 : Symmetry point group: Examples Part IVDownload
6Lecture 6 : Transformation matrices and Matrix representation: Download
7Lecture 7 : More on Matrix representation: Cartesian coordinates in C2v point groupDownload
8Lecture 8 : Matrix representation: the way aheadDownload
9Lecture 9 : Introduction to Group TheoryDownload
10Lecture 10 : Group Multiplication TablesDownload
11Lecture 11 : Groups and subgroupsDownload
12Lecture 12 : Classes, Similarity transformationsDownload
13Lecture 13 : Introduction to MatricesDownload
14Lecture 14 : Application of matrices in solution of simultaneous equationsDownload
15Lecture 15 : Matrix eigenvalue equationDownload
16Lecture 16 : Matrix eigenvalue equation: an exampleDownload
17Lecture 17 : Similarity TransformationsDownload
18Lecture 18 : Back to transformation matricesDownload
19Lecture 19 : Matrix representation revisitedDownload
20Lecture 20 : Function space and Transformation OperatorsDownload
21Lecture 21 : Transformation Operators form the same group as transformation matricesDownload
22Lecture 22 : Transformation Operators form a unitary representation for orthonormal basisDownload
23Lecture 23 : Transformation Operators: Switching BasesDownload
24Lecture 24 : Equivalent representationsDownload
25Lecture 25 : Unitary TransformationDownload
26Lecture 26 : Unitary Transformations-ContinuedDownload
27Lecture 27 : Reducible and Irreducible RepresentationsDownload
28Lecture 28 : Irreducible Representations and Great Orthogonality TheoremDownload
29Lecture 29 : Character Tables: C2vDownload
30Lecture 30 : Character Tables: C2v and C3vDownload
31Lecture 31 : Practice Session: Review of Some Questions and SolutionsDownload
32Lecture 32 : Reducible to Irreducible RepresentationsDownload
33Lecture 33 : Character Tables of Cyclic GroupsDownload
34Lecture 34 : Symmetry of Normal Modes: D3hDownload
35Lecture 35 : Symmetry of Normal Modes: D3h : ContinuedDownload
36Lecture 36 : Symmetry of Normal Modes: a shortcutDownload
37Lecture 37 : Recap: Reducible Representation for Normal ModesDownload
38Lecture 38 : Contribution of internal motion to normal modesDownload
39Lecture 39 : Normal mode analysis: some examplesDownload
40Lecture 40 : Infrared and Raman spectroscopyDownload
41Lecture 41 : IR and Raman activityDownload
42Lecture 42 : IR and Raman activity: examplesDownload
43Lecture 43 : Symmetry Adapted Linear Combinations (SALC)Download
44Lecture 44 : SALC:BeH2Download
45Lecture 45 : SALC:CH4 IntroductionDownload
46Lecture 46 : SALC:CH4Download
47Lecture 47 : Projection OperatorsDownload
48Lecture 48 : Projection Operators – ContinuedDownload
49Lecture 49 : Generating SALC’s using Projection OperatorsDownload
50Lecture 50 : Generating SALC’s using Projection Operators - ContinuedDownload
51Lecture 51 : Oh complex and Group-subgroup relationDownload
52Lecture 52 : Group-Subgroup RelationDownload
53Lecture 53 : SALCs as Pi-MO andCyclopropenyl groupDownload
54Lecture 54 : SALCs as Pi-MO, Cyclopropenyl groupDownload
55Lecture 55 : SALCs as Pi-MO, BenzeneDownload
56Lecture 56 : LCAO Huckel approximationDownload
57Lecture 57 : Huckel approximation: NaphthaleneDownload
58Lecture 58 : Stationary states, Multiplicity, EthyleneDownload
59Lecture 59 : Napthalene -IDownload
60Lecture 60 : Napthalene -IIDownload
61Lecture 61 : Napthalene -IIIDownload
62Lecture 62 : Transition Metal Complexes: CFT and LFTDownload
63Lecture 63 : Jahn-Teller Theorem, Tetragonal Distortion MOT:ML6, Sigma and Pi Bonds Download
64Lecture 64 : MOT approach of bonding,H2O,FerroceneDownload
65Lecture 65 : MOT approach of bonding,H2O,FerroceneDownload
66Lecture 66 : Derivation: Great Orthogonality Theorem – I (Schurrs Lemma 1)Download
67Lecture 67 : Derivation: Great Orthogonality Theorem – II (Schurrs Lemma 2)Download
68Lecture 68 : Derivation: Great Orthogonality Theorem –IIIDownload

Sl.No Chapter Name English
1Lecture 1 : Symmetry point group: IntroductionDownload
To be verified
2Lecture 2 : Symmetry point group: Examples Part IDownload
To be verified
3Lecture 3 : Symmetry point group: Examples Part IIDownload
To be verified
4Lecture 4 : Symmetry point group: Examples Part IIIDownload
To be verified
5Lecture 5 : Symmetry point group: Examples Part IVDownload
To be verified
6Lecture 6 : Transformation matrices and Matrix representation: Download
To be verified
7Lecture 7 : More on Matrix representation: Cartesian coordinates in C2v point groupDownload
To be verified
8Lecture 8 : Matrix representation: the way aheadDownload
To be verified
9Lecture 9 : Introduction to Group TheoryDownload
To be verified
10Lecture 10 : Group Multiplication TablesDownload
To be verified
11Lecture 11 : Groups and subgroupsDownload
To be verified
12Lecture 12 : Classes, Similarity transformationsDownload
To be verified
13Lecture 13 : Introduction to MatricesDownload
To be verified
14Lecture 14 : Application of matrices in solution of simultaneous equationsPDF unavailable
15Lecture 15 : Matrix eigenvalue equationPDF unavailable
16Lecture 16 : Matrix eigenvalue equation: an exampleDownload
To be verified
17Lecture 17 : Similarity TransformationsPDF unavailable
18Lecture 18 : Back to transformation matricesPDF unavailable
19Lecture 19 : Matrix representation revisitedDownload
To be verified
20Lecture 20 : Function space and Transformation OperatorsPDF unavailable
21Lecture 21 : Transformation Operators form the same group as transformation matricesDownload
To be verified
22Lecture 22 : Transformation Operators form a unitary representation for orthonormal basisPDF unavailable
23Lecture 23 : Transformation Operators: Switching BasesPDF unavailable
24Lecture 24 : Equivalent representationsPDF unavailable
25Lecture 25 : Unitary TransformationPDF unavailable
26Lecture 26 : Unitary Transformations-ContinuedPDF unavailable
27Lecture 27 : Reducible and Irreducible RepresentationsPDF unavailable
28Lecture 28 : Irreducible Representations and Great Orthogonality TheoremPDF unavailable
29Lecture 29 : Character Tables: C2vPDF unavailable
30Lecture 30 : Character Tables: C2v and C3vDownload
To be verified
31Lecture 31 : Practice Session: Review of Some Questions and SolutionsDownload
To be verified
32Lecture 32 : Reducible to Irreducible RepresentationsDownload
To be verified
33Lecture 33 : Character Tables of Cyclic GroupsDownload
To be verified
34Lecture 34 : Symmetry of Normal Modes: D3hDownload
To be verified
35Lecture 35 : Symmetry of Normal Modes: D3h : ContinuedDownload
To be verified
36Lecture 36 : Symmetry of Normal Modes: a shortcutDownload
To be verified
37Lecture 37 : Recap: Reducible Representation for Normal ModesPDF unavailable
38Lecture 38 : Contribution of internal motion to normal modesDownload
To be verified
39Lecture 39 : Normal mode analysis: some examplesDownload
To be verified
40Lecture 40 : Infrared and Raman spectroscopyDownload
To be verified
41Lecture 41 : IR and Raman activityDownload
To be verified
42Lecture 42 : IR and Raman activity: examplesDownload
To be verified
43Lecture 43 : Symmetry Adapted Linear Combinations (SALC)Download
To be verified
44Lecture 44 : SALC:BeH2Download
To be verified
45Lecture 45 : SALC:CH4 IntroductionPDF unavailable
46Lecture 46 : SALC:CH4PDF unavailable
47Lecture 47 : Projection OperatorsDownload
To be verified
48Lecture 48 : Projection Operators – ContinuedPDF unavailable
49Lecture 49 : Generating SALC’s using Projection OperatorsDownload
To be verified
50Lecture 50 : Generating SALC’s using Projection Operators - ContinuedDownload
To be verified
51Lecture 51 : Oh complex and Group-subgroup relationPDF unavailable
52Lecture 52 : Group-Subgroup RelationDownload
To be verified
53Lecture 53 : SALCs as Pi-MO andCyclopropenyl groupDownload
To be verified
54Lecture 54 : SALCs as Pi-MO, Cyclopropenyl groupDownload
To be verified
55Lecture 55 : SALCs as Pi-MO, BenzeneDownload
To be verified
56Lecture 56 : LCAO Huckel approximationDownload
To be verified
57Lecture 57 : Huckel approximation: NaphthaleneDownload
To be verified
58Lecture 58 : Stationary states, Multiplicity, EthyleneDownload
To be verified
59Lecture 59 : Napthalene -IDownload
To be verified
60Lecture 60 : Napthalene -IIDownload
To be verified
61Lecture 61 : Napthalene -IIIDownload
To be verified
62Lecture 62 : Transition Metal Complexes: CFT and LFTDownload
To be verified
63Lecture 63 : Jahn-Teller Theorem, Tetragonal Distortion MOT:ML6, Sigma and Pi Bonds Download
To be verified
64Lecture 64 : MOT approach of bonding,H2O,FerroceneDownload
To be verified
65Lecture 65 : MOT approach of bonding,H2O,FerroceneDownload
To be verified
66Lecture 66 : Derivation: Great Orthogonality Theorem – I (Schurrs Lemma 1)Download
To be verified
67Lecture 67 : Derivation: Great Orthogonality Theorem – II (Schurrs Lemma 2)Download
To be verified
68Lecture 68 : Derivation: Great Orthogonality Theorem –IIIDownload
To be verified


Sl.No Language Book link
1EnglishNot Available
2BengaliNot Available
3GujaratiNot Available
4HindiNot Available
5KannadaNot Available
6MalayalamNot Available
7MarathiNot Available
8TamilNot Available
9TeluguNot Available