## An Introduction to Underground Mine Environment and Ventilation -Web course

### COURSE OUTLINE

This course will provide knowledge on supply and control of air for underground mines and the removal of contaminants. After the completion of the course, the student is expected to know about ventilation planning for an underground mine, details of different types of mechanical ventilators and ventilation system. Apart from this, it is expected that the student can design a ventilation system for a given set of conditions.



http://nptel.iitm.ac.in

# Mining Engineering

#### **COURSE DETAIL**

| Module        | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Number of<br>Lectures(Hours) | <ul><li>Pre-requisites:</li><li>No Pre-requisites for</li></ul>                                        |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------|
| 1. MINE GASES | General composition:<br>Composition of dry air,<br>Requirement of sufficient<br>quantity of air in mines.<br>Impurities in mine air.<br>Threshold limit values:<br>Threshold limit values of<br>gas mixtures. Relative<br>density and specific<br>gravity of gases. Oxygen:<br>General properties,<br>Physiological effects,<br>Detection of oxygen.<br>Nitrogen: General<br>properties. Carbon<br>dioxide: General<br>properties, Physiological<br>effects, Permissible<br>concentration, Detection<br>of co2. Carbon monoxide:<br>General properties,<br>Permissible<br>concentration,<br>Physiological effects,<br>Detection of carbon<br>monoxide. Hydrogen<br>sulphide: General | 10                           | a BE/B.Tech student.<br>Coordinators:<br>Dr. Harsha Vardhan<br>Department of Mining<br>EngineeringNITK |

properties, Physiological effects, Detection of H2S. Nitrous fumes: General properties, Physiological effects, Detection of NO2. Sulphur dioxide: General properties, Physiological effects, Detection of SO2. Hydrogen: Physical properties, Sources of hydrogen in underground mines. Methane: Physical properties, Explosibility curve of methane, Lag on ignition, Classification of coal mines based on methane emission, Occurrence of methane, Desorption of methane and its emission to underground openings. Methane outbursts:

In-seam outbursts, Roof and floor outbursts. Control of methane emission in mines. Methane drainage: Cross-measure methane drainage. Inseam gas drainage: Method of dewatering, Typical life cycle of a gas drainage borehole. Hirschbach method or superjacent heading method. Surface borehole technique. Components of methane drainage system: Pipe ranges, Monitors, Control and safety devices. Extractor pumps. Mine air sampling. Methods of sampling: Grab sampling, New advancement in technology of grab sampling, Integrated sampling. Analysis of mine air samples: Chemical analysis, Physical analysis. Testing of methane or firedamp. Indian regulations pertaining to methane concentration. Methods of detecting methane: Flame

|                         | safety lamp, Working<br>principle of flame safety<br>lamp, Manufacturers of<br>flame safety lamp in India,<br>Approval by DGMS.<br>Testing procedure of<br>methane: Accumulation<br>test, Percentage test.<br>Working of flame safety<br>lamp: Precautions to be<br>taken if firedamp<br>(methane) starts burning<br>within the gauze wire,<br>Limitations of the normal<br>flame safety lamp.<br>Methanometers: Test<br>procedure.                                               |    |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| 2. MINE<br>ILLUMINATION | Introduction. Technical<br>terms in lighting and<br>photometry: Intensity,<br>Mean spherical candle<br>power, Mean horizontal<br>candle power,<br>Illumination, Lumen,<br>Luminous efficiency,<br>Reflection. General<br>lighting arrangements,<br>Standards for mine<br>lighting, Important<br>guidelines with respect to<br>luminance, Introduction to<br>glare, Types of glare,<br>Glare reduction. Mine<br>lighting and its effects on<br>accidents, production and<br>health | 2  |  |
| 3. HEAT AND<br>HUMIDITY | Introduction. Various<br>terminology used in<br>psychrometry: Vapour<br>pressure, Saturation<br>vapour pressure, Gas<br>constant of unsaturated<br>air, Specific heat of moist<br>air, Latent heat, Sensible<br>heat, Sigma heat and<br>total heat, Density of<br>humid air. Humidity,<br>Different ways of<br>expressing humidity:<br>Relative humidity, Specific<br>humidity, Absolute<br>humidity. Dew point.<br>Degree of saturation.                                         | 10 |  |

Measurement of water vapour in air. Thermodynamic method of measuring humidity: Dry-bulb temperature, Wet-bulb temperature. Concept of wet bulb temperature and barometric pressure: Concept of wet-bulb temperature, Concept of barometric pressure. Types of hygrometers: Wall mounted type hygrometer: Construction, Working, Precautions, Whirling hygrometer or sling psychrometer: Construction, Working, Precautions, Limitations. Assmann psychrometer: Construction, Working, Advantages, Precautions. Calculating water vapour content in the unsaturated air. Steps for calculating water vapour content of moist air. Sources of heat in mines. Strata heat: Geothermal step and geothermal gradient, Thermal conductivity of rocks, Heat flux, Virgin rock temperature, Fourier's law, Factors determining strata heat flow in mines. Some of the theoretical concepts involved in heat flow: Sensible heat flow, Latent heat flow, Humidity, Thermostat condition in the return. Other sources of heat addition to underground mine environment: Autocompression, Machinery and lights: Electrical machinery, Diesel equipments, Compressed air run engines. Underground water, Human metabolism, Rock movement, Oxidation, Blasting and fragmented rocks/minerals, Pipelines,

|                                                                   | Energy losses in airways,<br>Sources of cooling in<br>mines. Metabolic heat<br>balance in human body.<br>Some terminologies:<br>Mean skin temperature<br>and core body<br>temperature,<br>Hypothermia,<br>Hyperthermia. Effects of<br>heat and humidity: Heat<br>loss greater than heat<br>generated, Heat loss<br>lower than heat<br>generated, Effect of high<br>wet bulb temperature,<br>Heat hazards: heat<br>cramps, heat exhaustion,<br>heat stroke, Effect of air<br>velocity, Fall of miners<br>working efficiency. Heat<br>indices in underground<br>mines: Direct indices,<br>Empirical indices,<br>Rationally derived heat<br>indices. Need of<br>controlling mine<br>environment.<br>Refrigeration: Methods of<br>refrigeration, Different<br>types of refrigeration<br>plants based on location.<br>Heat exchangers,<br>Classification of heat<br>exchangers, Examples of<br>heat exchangers, Some<br>other indirect ways of<br>controlling mine climate. |   |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| 4. APPLICATION<br>OF FLUID<br>MECHANICS IN<br>MINE<br>VENTILATION | Introduction to Fluid and<br>Basic Equations.<br>Reynolds Number and<br>Critical Velocity. Approach<br>Towards Reynolds<br>Number. Laminar Flow.<br>Friction Factor. Turbulent<br>Flow. Expression for<br>Pressure Loss due to<br>Turbulent Flow in Pipes.<br>Work Done Against<br>Friction. Which Type of<br>Flow is Favorable in<br>Mines. Eddy Formation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 |  |
| 5. AIRWAY<br>RESISTANCE                                           | Atkinsons Equation,<br>Determination of<br>Coefficient of Friction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 |  |

|                             | Factor ( ): By Analogy<br>with Similar Airways, From<br>Design Tables, From<br>Geometric Data. Shock<br>Loss, Shock Pressure<br>Loss, Equivalent Length.<br>Shock Factor, Types of<br>Bends, Shock Loss<br>Factor for Bends, Shock<br>Loss Factor for Area<br>Changes, Drag<br>Coefficient.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| 6.<br>UNDERGROUND<br>SYSTEM | How Air Flows in Mines,<br>Categorization of<br>Ventilation System in<br>Mines, Elements of<br>Primary Ventilation<br>System: Downcast and<br>Upcast, Intakes and<br>Returns, Fans, Choice<br>Between Forcing and<br>Exhausting Fan System,<br>Stoppings and Seals,<br>Doors, Airlocks,<br>Regulators, Passive<br>Regulator, Active<br>Regulator, Active<br>Regulator, Air Crossings.<br>District System: U-Tube<br>Ventilation System,<br>Through-Flow Ventilation<br>System: Application of U-<br>Tube Type Ventilation<br>System: Application of U-<br>Tube Type Ventilation<br>System in Bord and Pillar<br>Method of Mining,<br>Application of U-Tube<br>Type Ventilation System<br>in Longwall Mining:<br>Advancing Longwall<br>Panel, Retreating<br>Longwall Panel, W-<br>System. | 2 |  |
| 7. NATURAL<br>VENTILATION   | Natural Ventilation,<br>Production of Natural<br>Ventilation, Density<br>Difference Between the<br>Air of two Shafts,<br>Definition of Natural<br>Ventilating Pressure,<br>Motive Column,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 |  |

|                              | Computation of NVP from<br>Air Density, Practical<br>Methods Of Determining<br>NVP: From Measurement<br>of Pressure and Quantity<br>of Air in the Fan Drift,<br>From Measurement of<br>Pressure and Quantities<br>in the Fan-Drift at two<br>Different Speeds of Fan,<br>From Measurement of Air<br>Pressure at Pit-Bottom<br>with Fan Running and<br>Fan Stopped.<br>Determination of Natural<br>Ventilation Pressure from<br>Thermodynamic Principle,<br>Natural Ventilation along<br>with Mechanical<br>Ventilation, NVP<br>Determination From PV-<br>Diagram.                                                                                                                                                                                                                                                       |   |  |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| 8. MECHANICAL<br>VENTILATION | Basic Types of Fans<br>Used for Ventilating<br>Underground Mines.<br>Centrifugal Fan; Eye in a<br>Centrifugal Fan, Single<br>Inlet and Double Inlet<br>Centrifugal Fans, Types of<br>Blades, Evasee and<br>Scroll/Volute,<br>Classification of<br>Centrifugal Fans: Based<br>on Intake and Discharge,<br>Based on Location of<br>Drive/Motor. Axial Flow<br>Fan. Classification Based<br>on Attachment of the<br>Blade. Types of Blades.<br>Derivation of Theoretical<br>Head Developed by<br>Centrifugal Fans.<br>Theoretical Head<br>Characteristics of a<br>Centrifugal Fan.<br>Theoretical Power<br>Characteristics of<br>Centrifugal Fan.<br>Theoretical Power<br>Characteristics of<br>Centrifugal Fan.<br>Efficiencies Associated<br>with a Fan. Fan Laws.<br>Characteristic Curves of<br>Fan: Comparison of the | 8 |  |

Characteristics of a Runner and a Mountaineer, What Does a Fan Characteristic Curve Give. Pressure **Ouantity Curve: What is** Stall Zone in PQ – Curve, What Happens if a Fan is Operated in the Stall Zone. Input Power Curve. Efficiency Curve: Air Power, If No Work is Done What Happens to the Input Power Supplied to the Fan. Selection Process of Mine Fans: Fan Selection, Fans in Series, Fans in Parallel. Series Connection: Case - I, Case - II, Case - III. Parallel Connection: Case – I, Case – II. Fan Selection. General Expression for Series and Parallel Connection: Series Connection. Parallel Connection. Auxiliary Ventilation. Types of Auxiliary Ventilation. Forcing System of Auxiliary Ventilation: General, Advantages of Forcing System of Auxiliary Ventilation, Disadvantages of Forcing System of Auxiliary Ventilation. Exhaust System of Auxiliary Ventilation: General. Advantages of Exhaust System of Auxiliary Ventilation, Disadvantages of Exhaust System of Auxiliary Ventilation. Overlap System of Auxiliary Ventilation: General, Advantages of Overlap System of Auxiliary Ventilation, Disadvantages of Overlap System of Auxiliary Ventilation. Reversible System of Auxiliary Ventilation:

|                                       | General, Advantages of<br>Reversible System of<br>Auxiliary Ventilation,<br>Disadvantages of<br>Reversible System of<br>Auxiliary Ventilation. Line<br>Brattices System of<br>Auxiliary Ventilation:<br>Advantages of Line<br>Brattice System of<br>Auxiliary Ventilation,<br>Disadvantages of Line<br>Brattice System of<br>Auxiliary Ventilation.<br>Booster Fans, Purpose of<br>Booster Fans, Purpose of<br>Booster Fans,<br>Disadvantage of Booster<br>Fans, Critical Pressure of<br>Booster Fan, Pressure<br>Required to be<br>Developed by Booster<br>Fan, Installation of<br>Booster Fans.                                                                        |   |  |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| 9. VENTILATION<br>NETWORK<br>ANALYSIS | Airways Connected in<br>Series and Parallel:<br>Airways Connected in<br>Series, Airways<br>Connected in Parallel,<br>Ratio of Resistances of<br>Series and Parallel<br>Airways. Splitting of<br>Airways: Merits, Demerits.<br>Merits and Demerits of<br>Series Airways.<br>Introduction, Basic<br>Concepts in Ventilation<br>Network Analysis:<br>Junctions, Branch, Mesh,<br>Kirchhoff's Laws:<br>Kirchhoff's First Law,<br>Kirchhoff's Second Law.<br>Methods of Solving<br>Ventilation Networks:<br>Network Reduction Using<br>Series and Parallel<br>Circuits, Using Kirchhoff's<br>Laws, Numerical<br>Methods. Hardy Cross<br>Method of Successive<br>Approximation | 2 |  |
| 10.                                   | Ventilation Surveys. Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 |  |

| VENTILATION<br>SURVEYS | Quantity Survey: Vane<br>Anemometer, Pitot Static<br>Tube, Smoke Tube, Kata-<br>Thermometer, Hot Wire<br>Anemometer, Tracer Gas<br>Method. Air Quantity<br>Measurement using<br>Orifice Plates and<br>Venturimeters: Orifice<br>Plates, Venturi Meters.<br>Selection of<br>Measurement Stations for<br>Pressure Quantity<br>Survey. Measurement of<br>Cross-Sectional Area:<br>Taping, Offset Method,<br>Profilometer Method,<br>Craven Sunflower<br>Method, Photographic<br>Method. Pressure<br>Surveys: Aneroid<br>Barometer. Equipments<br>Required for Pressure<br>Quantity Survey.<br>Organization of Pressure<br>Quantity Surveys. Air<br>Quality Surveys. |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

## **References:**

- 1. Banerjee S.P. (2003); "Mine Ventilation"; Lovely Prakashan, Dhanbad, India.
- 2. Deshmukh, D. J. (2008); "Elements of Mining Technology,Vol. , II"; Denett & Co., Nagpur, India.
- 3. Hartman, H. L., Mutmansky, J. M. & Wang, Y. J. (1982); "Mine Ventilation and Air Conditioning"; John Wiley & Sons, New York.
- 4. Karmakar, N. C. (2001); "Handbook of gas testing"; Lovely Prakashan, Dhanbad, India.
- 5. Le Roux, W. L. (1972); Mine Ventilation Notes for Beginners"; The Mine Ventilation Society of South Africa.
- 6. McPherson, M. J. (1993); Subsurface Ventilation and Environmental Engineering"; Chapman & Hall, London.
- 7. Misra G.B. (1986); "Mine Environment and Ventilation"; Oxford University Press, Calcutta, India.
- 8. Ramlu, M.A. (1991); "Mine fires, Explosions, Rescue, Recovery and Inundations"; Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.
- 9. Vutukuri, V. S. & Lama, R. D. (1986); "Environmental Engineering in Mines"; Cambridge University Press, Cambridge.