NOC:Networks and Systems(Course sponsored by Aricent) - Video course

COURSE OUTLINE

Networks, signals and systems form the basic foundations of electrical engineering. Any electrical engineering product handles signals using electrical networks and circuits, which are called systems. Having a good understanding of signals and their time/frequency domain characterization is an absolute must for any electrical engineer. This course is a basic introduction to discrete and continuous-time signals, Fourier series, Fourier transforms and Laplace transforms.

Week. No	Topics
1.	 Signals, Systems, Networks Introduction to Systems, Signals, Networks Representation and classification of systems Linear systems, time-invariance and causality Elementary signals: DC, sinusoidal, exponential, unit step, unit ramp, unit impulse or delta function Complex frequencies of signals Basic discrete-time signals Characterization of a linear system Impulse response Convolution, Evaluation of convolution
2.	 Fourier series 1. Evaluating Fourier series coefficients 2. Symmetry conditions 3. Application to network analysis 4. Exponential Fourier series

Electronics & Communication Engineering

http://nptel.ac.in

Pre-requisites:

1. Basic electrical circuits

2. Calculus

Coordinators:

C. S. Ramalingam Department of Electrical EngineeringIIT Madras

Dr. Andrew Thangaraj Department of Electrical EngineeringIIT Madras

Prof. V.G.K. Murti Department of Electrical EngineeringIIT Madras

	 Frequency spectrum Use of impulses in evaluating Fourier series coefficients Power and related ideas Convergence of Fourier series Properties of Fourier series
3.	 Continuous-time Fourier transform 1. From Fourier series to Fourier transform 2. Fourier transform: definition and examples 3. Properties of Fourier transform 4. Energy considerations 5. Continuous-time Fourier transform of signals that are not absolutely integrable 6. Continuous-time Fourier transform of periodic signals 7. Continuous-time Fourier transform of unit step function and signum function 8. Continuous-time Fourier transform of truncated sinusoid 9. Convolution property of Fourier transform 10. Application of continuous-time Fourier transform
4.	 Laplace transforms Introduction and definition Laplace transforms of important functions: unit impulse, unit step, poles/zeros, notation Properties: Linearity, differentiation in the time domain Application of Laplace transform methods to circuit elements Properties of Laplace transforms: Multiplication by `t', integration, application to circuit elements, shift in `s' domain, shift in time domain, scaling, division by `t', initial value theorem, final value theorem, convolution in time domain Laplace transform of periodic functions Inverse Laplace transformation Partial fraction expansion: simple poles, multiple poles Inverse Laplace transform by contour integration Relationship between Laplace and Fourier transforms

 Circuit analysis: Resistor, Mutual inductance Example of Laplace transform method: Circuit with sinusoidal input, discontinuous current, discontinuous source Advantages of Laplace transform approach Application of Laplace transform method to a general LTI system The many facets of the system function H(s) Frequency response and stability System analysis example: find impulse response, system function, response to exponential input, steady-state response to a sinusoid 	5.	Applications of Laplace transform Applications of Laplace transform to network transients 	
 8. System analysis example: find impulse response, system function, response to exponential input, steady-state response to a sinusoid 		 Circuit analysis: Resistor, Mutual inductance Example of Laplace transform method: Circuit with sinusoidal input, discontinuous current, discontinuous source Advantages of Laplace transform approach Application of Laplace transform method to a general LTI system The many facets of the system function H(s) Frequency response and stability 	
		 System analysis example: find impulse response, system function, response to exponential input, steady-state response to a sinusoid 	