

Nonequilibrium Statistical Mechanics - Video course

COURSE OUTLINE

Thermal fluctuations, Langevin dynamics, Brownian motion and diffusion, Fokker-Planck equations, linear response theory, fluctuation-dissipation relations, the Boltzmann equation, critical phenomena, scaling and critical exponents.

COURSE DETAIL

NP.

Pre-requisites:

http://nptel.ac.in

Physics

equilibrium mechanics

Coordinators:

Balakrishnan Department of **PhysicsIIT Madras**

6 Lecture 6: Linear response theory (Part 1)

	 Classical and quantum equations of motion in Hamiltonian dynamics Liouville operator and its hermiticity Unitarity of the time evolution operator Density matrix; pure and mixed states Liouville and von Neumann equations for the density operator Expectation value of a physical observable
7	Lecture 7: Linear response theory (Part 2)
	 Equilibrium density matrix in the canonical ensemble Time dependent perturbation of a Hamiltonian system First-order correction to the density operator First-order correction to the mean value of an observable Linear, causal, retarded response Definition of the response function
8	Lecture 8: Linear response (Part 3)
	 Equivalent expressions for the response function Response to a sinusoidal force and generalized susceptibility Symmetry properties of the frequency-dependent susceptibility Double-time retarded Green function Spectral function and its relation to the generalized susceptibility
9	Lecture 9: Linear response(Part 4)
	 Susceptibility for an oscillator in a fluid Poles of the oscillator susceptibility in the complex frequency plane Simplification of the general expression for the response function Simplified expression in the classical case Kubo canonical correlation in the quantum mechanical case
10	Lecture 10: Linear response (Part 5)
	 Canonical correlation functions Response function as a canonical correlation Properties of canonical correlations: stationarity, symmetry and reality Physical implication of reality property Analyticity of the susceptibility in the upper half frequency plane
11	Lecture 11: Linear response (Part 6)
	 Dispersion relations for the real and imaginary parts of the susceptibility Asymptotic behavior of the susceptibility and subtracted dispersion relations Case of a singular DC susceptibility Response function in terms of matrix elements of observables Susceptibility in terms of transition frequencies
12	Lecture 12: Linear response theory (Part 7)
	 Spectral function in terms of the transition frequencies of a system Master analytic function from the spectral function Boundary values of the master function: Retarded and advanced susceptibilities Fourier representation of two-time correlation functions Fourier representation of two-time anticommutator
13	Lecture 13: Quiz 1 - Questions and answers
14	Lecture 14: Linear response theory (Part 8)
	 Symmetry or antisymmetry of the response function under time-reversal Spectral function as the real or imaginary part of the susceptibility Equilibrium averages of equal-time commutators and moments of the spectral function High-frequency expansion of the susceptibility
15	Lecture 15: Linear response theory (Part 9)
тJ	

1		
	 Derivation of the response in the Heisenberg picture Differential and integral equations for the time-development operator Solution to first order in the perturbation 	
	 Expression for the response function General relation between power spectra of the response and fluctuations 	
16	Lecture 16: The dynamic mobility	
	 Definition of the mobility of a Brownian particle Zero-frequency mobility and diffusion constant Dynamic mobility as a generalized susceptibility Consistency of the Langevin model with linear response theory Non-diffusive behaviour of a Brownian oscillator 	
17	Lecture 17: Fokker-Planck equations (Part 1)	
	 Langevin equation (LE) for a general diffusion process Corresponding Fokker-Planck equation (FPE) for the conditional PDF Case of linear drift and constant diffusion coefficients Examples: FPE for the velocity PDF, diffusion equation for the positional PDF FPE for the phase space PDF of a Brownian particle Generalization to three dimensions 	
18	Lecture 18: Fokker-Planck equations (Part 2)	
	 FPE for general (nonlinear) drift and diffusion coefficients in the multi- dimensional case Kramers' equation for phase space PDF in an applied potential Asymptotic form of the phase space PDF Diffusion regime (or high-friction limit): Smoluchowski equation for the positional PDF Overdamped oscillator: OU distribution for the positional PDF 	
19	Lecture 19: Fokker-Planck equations (Part 3)	-
	 Stationary solution of the Smoluchowski equation Thermally-assisted escape over a potential barrier Kramers' escape rate formula Diffusion in a constant force field: sedimentation 	
20	Lecture 20: The generalized Langevin equation (Part 1)	-
	 Inconsistency in the Langevin model: non-stationarity of the velocity Divergence of mean squared acceleration Generalized Langevin equation and memory kernel Frequency-dependent friction Dynamic mobility in the generalized model 	
21	Lecture 21: The generalized Langevin equation (Part 2)	·
	 Kubo-Green formula for the mobility: first FD theorem Consistency of the model with stationarity and causality Cross-correlation between the noise and the velocity Relation between noise autocorrelation and memory kernel: second FD theorem 	
22	Lecture 22: Diffusion in a magnetic field	
	 Langevin equations for position and velocity with a velocity-dependent force Smoluchowski equation for positional PDF Identification and calculation of the diffusion tensor FPE for the radial distance PDF in Brownian motion Corresponding LE with a drift term for the radial distance 	
23	Lecture 23: The Boltzmann equation for a dilute gas (Part 1)	
	Single-particle phase space	

	 Equation for number density in the absence of collisions Binary collisions and two-particle scattering The collision integral The Boltzmann equation
24	Lecture 24: The Boltzmann equation for a dilute gas (Part 2)
	 The equilibrium distribution: sufficiency condition Boltzmann's <i>H</i>-Theorem The equilibrium distribution: necessary condition The Maxwell-Boltzmann distribution Equilibrium distribution in a potential
25	Lecture 25: The Boltzmann equation for a dilute gas (Part 3)
	 Remarks on the <i>H</i>-Theorem Detailed balance and equilibrium distribution Collision invariants and equations of continuity Linearization of the Boltzmann equation close to equilibrium
26	Lecture 26: The Boltzmann equation for a dilute gas (Part 4)
	 Single relaxation time approximation to the collision integral Relaxation of the velocity Equivalence to a Kubo-Anderson Markov process Relaxation of a non-uniform distribution in the position variable
27	Lecture 27: The Boltzmann equation for a dilute gas (Part 5)
	 Relaxation of a non-uniform gas Frequency-dependent diffusion coefficient The diffusion constant Shift of the equilibrium velocity distribution under a uniform force
28	Lecture 28: Quiz 2 - Questions and answers
28 29	Lecture 28: Quiz 2 - Questions and answers Lecture 29: Critical phenomena (Part 1) • Recapitulation of thermodynamics • Intensive and extensive variables • Phase diagram for a single component substance • Liquid-gas coexistence line and the critical point
	 Lecture 29: Critical phenomena (Part 1) Recapitulation of thermodynamics Intensive and extensive variables Phase diagram for a single component substance
29	Lecture 29: Critical phenomena (Part 1) • Recapitulation of thermodynamics • Intensive and extensive variables • Phase diagram for a single component substance • Liquid-gas coexistence line and the critical point Lecture 30: Critical phenomena (Part 2) • Extensivity of thermodynamic potentials • Some convexity properties of thermodynamic potentials • Divergence of specific heat at the critical point • Simplest magnetic equation of state • Fluid-magnet analogy
29	Lecture 29: Critical phenomena (Part 1) • Recapitulation of thermodynamics • Intensive and extensive variables • Phase diagram for a single component substance • Liquid-gas coexistence line and the critical point Lecture 30: Critical phenomena (Part 2) • Extensivity of thermodynamic potentials • Some convexity properties of thermodynamic potentials • Divergence of specific heat at the critical point • Simplest magnetic equation of state
29	Lecture 29: Critical phenomena (Part 1) • Recapitulation of thermodynamics • Intensive and extensive variables • Phase diagram for a single component substance • Liquid-gas coexistence line and the critical point Lecture 30: Critical phenomena (Part 2) • Extensivity of thermodynamic potentials • Some convexity properties of thermodynamic potentials • Divergence of specific heat at the critical point • Simplest magnetic equation of state • Fluid-magnet analogy
29	Lecture 29: Critical phenomena (Part 1) • Recapitulation of thermodynamics • Intensive and extensive variables • Phase diagram for a single component substance • Liquid-gas coexistence line and the critical point Lecture 30: Critical phenomena (Part 2) • Extensivity of thermodynamic potentials • Some convexity properties of thermodynamic potentials • Divergence of specific heat at the critical point • Simplest magnetic equation of state • Fluid-magnet analogy Lecture 31: Critical phenomena (Part 3) • Fluid-magnet analogy (contd.): phase diagrams • Ising model with nearest-neighbour interaction • Mean field theory (MFT) for the Ising model • Critical temperature in MFT
29 30 31	 Lecture 29: Critical phenomena (Part 1) Recapitulation of thermodynamics Intensive and extensive variables Phase diagram for a single component substance Liquid-gas coexistence line and the critical point Lecture 30: Critical phenomena (Part 2) Extensivity of thermodynamic potentials Some convexity properties of thermodynamic potentials Divergence of specific heat at the critical point Simplest magnetic equation of state Fluid-magnet analogy Lecture 31: Critical phenomena (Part 3) Fluid-magnet analogy (contd.): phase diagrams Ising model with nearest-neighbour interaction Mean field theory (MFT) for the Ising model Critical exponents in MFT Critical exponents in MFT

33	Lecture 33: Critical phenomena (Part 5)				
	 Equation of state in the Ising model Magnetization versus magnetic field for different temperatures Landau expansion for the free energy Criterion for the validity of MFT 				
	Upper critical dimensionality in the Ising universality class				
34	Lecture 34: Critical phenomena (Part 6)				
	 Scaling functions Relations between critical exponents Landau free energy functional Equilibrium configuration of the order parameter Relaxation to equilibrium configuration 				
35	Lecture 35: Critical phenomena (Part 7)				
	 Time-dependent Landau-Ginzburg equation Langevin equation for the order parameter Fokker-Planck equation for configuration probability Linearized LE and relaxation to equilibrium Critical slowing down Dynamic scaling hypothesis 				
36	Lecture 36: The Wiener process (standard Brownian motion)				
	The Wiener process (standard Brownian motion)				
	 Sample path properties Iterated logarithm law and arcsine law 				
	 Functionals of the Wiener process Itô calculus: basic rules 				
	The Feynman-Kac formula and generalizations				
Refere					
В	. Balakrishnan, Elements of Nonequilibrium Statistical Mechanics, Ane ooks, Delhi & CRC Press, 2008.(Chapters 1-4, 6, 9, 11-13, 15-17.)				
	. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group, evant Books, Kolkata, India, 2005. (Chapters 1, 5, 8.)				
3. K	. Huang, Statistical Mechanics, 2nd edition, Wiley, New York, 1987. (Chapters				
4. N	, 4, 16, 17.) I. Kardar, Statistical Physics of Fields, Cambridge University Press,				
	ambridge, 2007. (Chapters 3, 4.) . Kubo, M. Toda and N. Hashitsume, Statistical Physics II: Nonequilibrium				
S	tatistical Mechanics, Springer-Verlag, Berlin, 1985. (Chapters 1, 2, 4.)				
Р	 L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd edition, Pergamon, New York, 1980. (Chapter 12.) 				
	7. G. F. Mazenko, Nonequilibrium Statistical Mechanics, Wiley-VCH, Weinheim, 2006. (Chapters 1, 2, 7, 8.)				
8. H	. Risken, The Fokker-Planck Equation, Springer-Verlag, New York, 1996.				
9. H	Chapters 2-4, 6.) . E. Stanley, Introduction to Phase Transitions and Critical Phenomena, xford University Press, Oxford, 1989. (Chapters 1, 3, 5, 6, 10-12.)				