NUCLEAR REACTORS AND SAFETY- AN INTRODUCTION -Video course #### **COURSE OUTLINE** Nuclear safety is today an important topic of discussions and debate, whenever we talk about Nuclear Energy. The concerns have arisen after the accidents at Chernobyl in Russia and Fukushima in Japan. Subsequent to the bombings of Hiroshima and Nagasaki, the approach in all nuclear facilities right from their inception, has been to minimize the chance of any maloperation, minimize the consequences of any event should it occur and containing any radiation from the plant, referred to as the Defence in Depth approach. Safety regulation under the International atomic Energy Agency has been the hallmark in the Nuclear arena. New designs like GEN IV utilize passive systems for shutting down and heat removal, making such designs more immune to failures in active systems. The follow up of the survivors of the Hiroshima Nagasaki bombings and their future off-springs have shown that a maximum of 2 cancers could only be attributed to the bombs. To appreciate the nuclear power and its benefits to mankind, one needs to understand the different safety approaches from site selection to operation of Nuclear reactors. It is also necessary to look at the regulatory approaches adopted, which assures safety. This course is expected to provide information to the graduate and post graduate students undergoing courses in nuclear engineering in IITs and other Universities on all aspects of nuclear safety. #### **COURSE DETAIL** | Module
No | TOPIC | Lectures | |--------------|--|----------| | 1 | Introduction | 2 | | | Energy sources, Nuclear Power
Production, medical and Societal
applications of radiation | | | | Nuclear fuel cycle | | **NPTEL** http://nptel.ac.in **Physics** ## **Pre-requisites:** The reader must have a general picture about the various energy sources and their applications ## **Additional Reading:** - IAEA.org - Wano.org - Aerb.gov.in #### **Coordinators:** **Dr.G.Vaidyanathan**Department of Nuclear EnggSRM University | | + | | |---|---|---| | 2 | Basic Physics of Nuclear Reactors | 2 | | | Atomic Structure, isotopes,
Radioactivity , half life | | | | Basics of fission reaction, Moderation,
Criticality, Decay heat, Reactivity and
Feedback, Breeding | | | 3 | Nuclear Reactor Types | 2 | | | Components of Nuclear Reactor,
Present Reactor Types | | | | Generation IV Concepts | | | 4 | Radiation sources and Protection | 2 | | | Radiation and its units, Natural background and man made Radiation | | | | Biological Effects, Exposure limits and protection, Sources of radiation, shielding | | | 5 | Safety Principles | 2 | | | Safety objectives, Defence in depth philosophy, Multiple barriers, Radwaste management | | | | Levels of defence, Redundancy,
Diversity Principles, Event analysis,
core inventory, emergency response | | | 6 | Safety Approach | 2 | | | Deterministic approach- Design Basis
Events & Beyond Design Basis
Events, Acceptance Criteria | | | | Probabilistic approach- Fault tree, event tree, failure rates | | | 7 | History of Events in Nuclear reactors and facilities | 2 | |----|--|---| | | INES Scale, TMI, Chernobyl,
Fukushima, Windscale, Thorp
Reprocessing | | | | Kshtym, Vandellos, Tokaimura, NRX,
David Besse, Enrico Fermi, Narora
Fire, Monju and FBTR Sodium Leak,
Radiation over exposures in Industry
and Medical applications | | | 8 | Analysis of Some Events in NPP | 2 | | | Heat transfer and Fluid flow prediction, validation, Safety set points, Safety actions for events | | | | Spurious opening of Pressuriser valve in a PWR, LOCA analysis Indian PHWR, Station Blackout without Reactor Trip, FBTR | | | 9 | Quality Assurance | 1 | | | Quality Assurance Plan, materials,
Design, Fabrication, Maintenance
Surveillance, In Service Inspection,
Training & Qualification, Quality Audit | | | 10 | Siting of Nuclear plants | 2 | | | Site evaluation Stages, Site Rejection
Criteria, Earthquake, Geological
criteria, Meteorological considerations | | | | Flooding, Tsunami, Shoreline erosion,
chemical explosion, Radiological
impact study, Radioactivity pathways
to humans, environmental Impact
study | | | 11 | Engineered Safety Systems | 2 | | Shutdown systems in PWR,BWR,PHWR, Reactivity Worth of shutdown system, Trip Signals, Safety Logic | | | |---|---|--| | Operating Environment, Grouping of safety systems, Heat Removal systems, Emergency Core Cooling, Containment and subsystems | | | | 12 Assessment of Radiological
Consequences | 1 | | | Basis of Containment, Quantity of Radioactive materials, Neutron activation of Structures, Transfer and deposition in buildings, Containment leak rate, Environmental Transport and Deposition, source term | | | | 13 Safety Regulation In India | 3 | | | Atomic Energy Regulatory Board,
functions, safety Documents, Safety
Review of site, design, regulatory
inspections, safety review for PFBR,
Koodankulam | | | | Regulatory review of operating plants,
Licensing stages, licensing of
operating personnel, Training
simulator, safety up-gradation Review
after TMI Chernobyl, | | | | Review after Fukushima, safety review
for decommissioning, Safety Review of
Radiation Facilities, medical X-ray
units, Gamma irradiators | | | | 14 Safety Practices in Indian NPP | 3 | | | Radiological Protection to workers and public, Dose limits, Health physics, AERB Review | | | | Environmental radiological surveillance, Radiation around Coal | | | | | and Nuclear Power plants, Emergency
Preparedness and planning, on-site
emergency | | |----|--|--| | | Offsite Emergency Plans, National
Disaster Management Authority, Crisis
management Group of DAE, State and
District level Committees, Emergency
Exercises | | | 15 | 15 Passive Safety | | | | Definition, Categorization, Passive
Reactor Shutdown systems for PHWR,
FBR, Passive Decay Heat Removal
Systems for PWR,PHWR, | | | | Passive safety for containment cooling, Passive containment spray, hydrogen removal through PAHR, Passive features of AP600 and Advanced Heavy Water Reactor Designs, Issues related to Passive safety | | ## References: - 1. Vaidyanathan.G., Nuclear Reactor Engineering(Principles and Concepts), S.Chand & Company, New Delhi, 2013. - 2. Jacques LIBMANN, Elements Of Nuclear Safety, Les Editions de Physique 1996. - 3. Nuclear Power Reactor Safety. By E. E. Lewis. John Wiley and Sons, Inc., New York (1977). 630 pp - 4. Gianni Petrangeli, Nuclear Safety, Butterworth Heinemann, 2006,488 pp. - 5. NPTEL WEB COURSE on Nuclear Reactor Technology, K.S.Rajan, 2013 A joint venture by IISc and IITs, funded by MHRD, Govt of India http://nptel.ac.in