Quantum Mechanics and Applications -Video course

COURSE OUTLINE

Basic mathematical preliminaries:Dirac Delta function and Fourier Transforms.

Wave particle duality, one- and three- dimensional Schrödinger equation. The free particle problem in one dimension. Wave Packets and Group velocity.

One-dimensional problems: Potential well of infinite and finite depths, the linear harmonic oscillator.

Angular Momentum and rotation.

Three-dimensional Schrödinger equation: Particle in a box with applications to the free electron model. Particle in a spherically symmetric potential problem. The hydrogen atom and the deuteron.

(A numerical method to obtain solutions of the Schrödinger equation will also be discussed and a software to understand basic concepts in quantum mechanics will also be demonstrated).

Dirac's bra - ket algebra; Linear Harmonic Oscillator problem using bra - ket algebra, creation and annihilation operators, transition to the classical oscillator, Coherent states.

The angular momentum problem, using bra - ket algebra, ladder operators and angular momentum matrices. The Stern Gerlach and magnetic resonance experiments. Addition of Angular Momenta and Clebsch Gordon coefficients.

Perturbation Theory with applications; The JWKB approximation with applications; Scattering Theory: Partial Wave Analysis.

COURSE DETAIL

TOPICS	No. of Hours	
Basic mathematical preliminaries: Dirac Delta function and Fourier Transforms.	2	
Wave particle duality, one- and three-dimensional Schrödinger equation. The free particle problem in one dimension. Wave Packets and Group velocity.		
One-dimensional problems: Potential well of infinite and finite depths, the linear harmonic oscillator problem.	4	
Angular Momentum and rotation.	3	
Three-dimensional Schrödinger equation:	6	

Physics

Pre-requisites:

B.Sc. Mathematics & Physics.

Additional Reading:

- 1. R.P. Feynman, R.B. Leighton and M. Sands, *The Feynman Lectures on Physics*, Vol. I, Addison Wesley Publishing Co., Reading, Mass (1963).
- 2. A Ghatak, Basic Quantum Mechanics (with CD), Macmillan.

Coordinators:

Prof. Ajoy Ghatak

Department of PhysicsIIT Delhi

Particle in a box with applications to the free electron model. Particle in a spherically symmetric potential problem. The hydrogen atom and the deuteron. A numerical method to obtain solutions of the Schrödinger equation will also be discussed and a software to understand basic concepts in	
will also be discussed and a software to understand basic concepts in quantum mechanics will also be demonstrated. Dirac's bra - ket algebra; Linear Harmonic Oscillator problem using bra - ket algebra, creation and annihilation operators, transition to the	9
The angular momentum problem, using bra - ket algebra, ladder operators and angular momentum matrices. The Stern Gerlach and magnetic resonance experiments. Addition of Angular Momenta and Clebsch Gordon coefficients.	
Perturbation Theory with applications.	5
The JWKB approximation with applications.	3
Scattering Theory: Partial Wave Analysis.	4

References:

- 1. A Ghatak and S Lokanathan, Quantum Mechanics: Theory and Applications, 5th edition, Macmillan India, New Delhi (2005).
- 2. PAM Dirac, The Principles of Quantum Mechanics, Oxford University press, Oxford (1958).
- 3. J.L.Powell and B. Craseman, Quantum Mechanics, Addison Wesley (1961).

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in