NPTEL SYLLABUS

NATIONAL PROGRAMME ON TECHNOLOGY ENCHANCED LEARNING

Theory of groups for physics applications Physics

×

Instructor Name: Urjit A. Yajnik **Institute:** IIT Bombay **Department:** Physics

Course Intro: : Group Theory is the mathematics of symmetry. It is used extensively in quantum theory. There are applications to molecular structure, spectroscopy, crystal structure and to Elementary Particle physics

Pre Requisites: : Multivariate calculus, Linear Algebra, Introductory Quantum Mechanics, Special Theory of Relativity
Core/Elective: : Elective
UG/PG: : UG
Industry Support : materials technologies.

Reference : M S Dresselhaus, G Dresselhaus and A Jorio Applications of group theory to the physics of condensed matter (2008), Brian C Hall, Lie groups lie algebras and representations (2015), Morton Hammermesh Group theory and its applications to physical problems(1962)

About Instructor: Faculty at IIT Bombay since 1989. Primary research interest in Elementary Particle Physics and Cosmology. Primary teaching interest mathematical and theoretical physics. I like to design instructional material so that the essentials of the advanced material become accessible to interested undergraduates

NPTEL SYLLABUS

NATIONAL PROGRAMME ON TECHNOLOGY ENCHANCED LEARNING

COURSE PLAN

SL.NO	Week	Module Name
1	1	Introduction and Algebraic
		Preliminaries
2	1	
3	2	Lagranges Theorem and Cayleys
		Theorem
4	3	Cycle Structures and Molecular
		Notation
5	4	Point Group Notation and Factor Group
6	5	Representation Theory 2
7	6	Orthogonality for Characters
8	7	Preliminaries about the continuum
9	8	Classical Groups Topology
10	9	Generators, discussion of Lies theorems
11	10	SO3, SU2 Representations
12	11	Lorentz Boosts SO3,1 Algebra
13	12	SU(3) and Lies classification