Electromagnetic Theory - Video course

COURSE OUTLINE

The course is a one semester first course on Electromagnetic Theory at B.Sc. level. This course would be a pre-requisite for the advanced level course at the M. Sc. Level.

The course begins with a review of vector calculus which is extensively used in the course. The course covers electrostatics, magnetostatics, electromagnetic induction and electromagnetic waves.

At the end of this course, a student is expected to be familiar with both the differential and integral forms of Maxwell's equations.

COURSE DETAIL

SI.No.	Topic/s	No. of Lectures	Introo Magr
			Addi
1.	Introduction to Vector Calculus:	3	1.
	Spherical and Cylindrical coordinates, gradient, divergence and curl, Laplacian operator.		
	Volume and line integrals, surface integrals, Divergence and Stoke's theorem. Dirac delta		2.
	function.		Нуре
2.	Electrostatics:	15	1.
	Coulomb's law; forces and fields; Electric Field and Potential ; Principle of Superposition; idea of a conservative field.		2.
	Earnshaw's Theorem; electric dipoles, field of a dipole, couple and force on a dipole, energy of a dipole; Electric double layers.		Coor Prof. Depa
	Gauss's law; solutions for simple symmetry, capacitances, field near charged conductor;Conductors in Electrostatic field; Laplace and Poisson equations; uniqueness theorem.		
	Laplace's equation in rectangular coordinates, separation of variables. Laplace's equation in spherical coordinates, Legendre polynomials.		
	Conducting sphere in E field.Method of images; point charge near conducting sphere, line charge near conducting cylinder.		
	Isotropic dielectrics; polarisation charges		

Physics

Pre-requisites:

ntroductory course on Electricity and Magnetism at Halliday & Resnick level.

Additional Reading:

- 1. J. D. Jackson, "Classical Electrodynamics", 3rd Edition, Wiley (2007).
- Ashok Das, "Lectures on Electromagnetism", Hindustan Publishing, (2004).

Hyperlinks:

- 1. <u>http://ocw.mit.edu/OcwWeb/Physics/8-02Spring-2007</u>.
- 2. <u>http://www.cdeep.iitb.ac.in/nptel/Core</u> <u>Science/Engineering Physics 2/Course</u> <u>Objectives.html</u>.

Coordinators:

Prof. D.K. Ghosh Department of PhysicsIIT Bombay

	$(\rho_b;\sigma_b)$ Gauss's law; permittivity and susceptibility; properties of vectors D and E;	
	Boundary conditions at dielectric surfaces; relationship between E and P; thin slab in field, Energy of the electrostatic field, stress in a dielectric.	
3.	Magnetostatics:	10
	Electric current, Lorentz force, motion of charged particle in electric and magnetic field.	
	Force on and between current elements, definition of B and the Ampere's law;	
	Gauss's law; field, force, torque and energy; magnetic scalar potential, solid angle of a loop;	
	Ampere's law, examples; introduction to magnetic vector potential. Field of a small current loop; magnetic dipole, dipole in an external magnetic field, Biot-Savart's law.	
	Magnetic media; magnetization, existence of diamagnetism and paramagnetism; permeability and magnetic susceptibility; properties of B and H; boundary conditions at surfaces;	
	Methods of calculating B and H, magnetizable sphere in uniform field; electromagnets.	
4.	Faraday's law:	4
	Emf, electromagnetic induction, Faraday's law for a circuit, interpretation of Faraday's emf; self-inductance, inductance of long solenoid, coaxial cylinders, parallel cylinders; mutual inductance; transformers; magnetic energy density.	
5.	Electromagnetic waves:	8
	Equation of continuity, displacement current; Maxwell's equations; electromagnetic waves, velocity of light; plane waves in isotropic media;	
	Energy density; Poynting's theorem; radiation pressure and momentum; insulating media; plasmas and the plasma frequency, evanescent waves.	
	Characteristic impedance, reflection and transmission at an angle, total internal reflection. Conducting media; skin effect. Guided waves.	
	Introduction to waveguides; TE modes; waveguide equation; cut-off frequency; characteristic impedance;cavity resonators; optical fibre, radiation by an accelerated particle, elements of antenna theory.	

Deferences	
Relefences:	
 D. J. Griffiths, "Introduction to Electrodynamics", 3rd Edition, Prentice Hall International (1999). 	
 A. S.Mahajan and A, Rangwala, "Electricity and Magnetism", Tata McGraw Hill (1988). 	
 E. Purcell, "Electricity & Magnetism", 2nd Edition, McGraw Hill (1985). 	
 J. R. Reitz, F. J. Milford and R. W. Christie, "Foundations of Electromagnetic Theory", Addison Wesley (2008). 	
5. W. Greiner, "Classical Electrodynamics", Springer (1998).	
joint venture by IISc and IITs, funded by MHRD, Govt of India	http://nptel.iitm.ac