Diffusion in solids - Web course

COURSE OUTLINE

Many physical and mechanical properties in the solid state are controlled by the diffusion process. Fundamental knowledge in this area is very important to understand the performance of many products in applications such as in aero engines, electronic packaging etc. Even many components are manufactured using the diffusion process such as intermetallic superconductors, laminate structures, bond coats on the superalloys in turbine blades, carburized steels, doping of Si, nanotubes etc.

In this course, I have started with thermodynamics to understand the driving force for diffusion and then discussed Fick's laws of diffusion, atomic mechanism of diffusion, different kinds of diffusion parameters used depending on the conditions. Multicomponent diffusion is introduced. The recent developments in this area are also discussed. This course can be used by the advanced level undergraduate as well as at the initial stage of postgraduate students.

COURSE DETAIL

Module	SI. No. and Topic	Hours	
Module 1	Thermodynamics and defects in solids	9	
	 Lecture 1: Concept of free energy, enthalpy and entropy 		
	• Lecture 2: Gibb's free energy change with temperature in a single component system		
	 Lecture 3: Thermodynamic parameters in a binary system 		
	 Lecture 4: Thermodynamics and phase diagrams 		
	Lecture 5: Concept of the		

Pre-requisites:

 Very basic knowledge in the area of materials science including basic crystal structures.

Coordinators:

Dr. Aloke Paul

Department of Materials EngineeringIISc Bangalore

Module	Atomic mechanism of diffusion	6	
	 a tool to make products Lecture 17: Definition and description of different diffusion terms 		
	Lecture 16: Diffusion process as a tool to make products		
	diffusion Lecture 15: Product phase formations because of diffusion in real systems		
	 Lecture 14: Driving force for diffusion and Fick's laws of 		
	• Lecture 13: Diffusion under the thermodynamic driving forces		
Module 3	Diffusion under chemical potential gradient, the composition profiles in an interdiffusion zone and diffusion as a tool to make products	5	
	 Lecture 12: Solution for homogeneization (separation of variables) 		
	 Lecture 11: Solution in sem- infinite diffusion couples (error function analysis) 		
	 Lecture 10: Fick's laws of diffusion and thin film solution 		
Module 2	Fick's laws	3	
	Lecture 9: Calculation of thermodynamic parameters		
	 Lecture 8: Defects in the ordered phases 		
	Lecture 7: Equilibrium concentration of interstitial atoms		
	• Lecture 6: Point defects: Equilibrium vacancy concentration in a pure element.		
	chemical potential and the activity of elements		

	Lecture 18: Interstitial diffusion		
	 Lecture 19: Concept of random walk 		
	 Lecture 20: Substitutional diffusion 		
	 Lecture 21: Activation energy for diffusion 		
	 Lecture 22: Orientation dependence 		
	 Lecture 23: Diffusion in the ordered phases 		
Module 5	Determination of different kinds of diffusion parameters	13	
	 Lecture 24: Matano-Boltzmann analysis 		
	 Lecture 25: Calculation of diffusion parameters using the Matano-Boltzmann analysis 		
	 Lecture 26: Den Broeder and Wagner's approach 		
	• Lecture 27: Problem of finding the initial contact plane		
	 Lecture 28: Effect of molar volume in a hypothetical diffusion couple 		
	• Lecture 29: The Kirkendall effect		
	• Lecture 30: The intrinsic diffusion coefficients: Darken analysis and the van Loo relation		
	 Lecture 31: Integrated diffusion coefficient 		
	Lecture 32: Calculations of the integrated diffusion coefficients		
	 Lecture 33: Tracer diffusion coefficient and the vacancy wind effect 		
	 Lecture 34: Recent developments on the Kirkendall effect 		

_			
	 Lecture 35: Physico-chemical approach 		
	Lecture 36: Grain boundary diffusion		
Module 6	Phase diagram and diffusion in ternary and multicomponent systems	4	
	 Lecture 37: Ternary phase diagrams 		
	Lecture 38: Ternary and multicomponent diffusion		
	• Lecture 39: Intrinsic, integrated and the average diffusion coefficients		
	• Lecture 40: Phase diagram determination by the diffusion couple technique		
	Total	40	
Reference	es:		
1. Porte and A	er and Easterling, Phase Transformations i Alloys		
2. P.Sh	ewmon, Diffusion in Solids		
3. J. Philibert, Atom movements: Diffusion and mass transports in solids			
 Aloke Paul, Ph.D Thesis (2004), The Kirkendall effect in the solid state, <u>http://alexandria.tue.nl/extra2/200412361.pdf</u> 			

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in