Advances in Corrosion Engineering - Web course

COURSE OUTLINE

Introduction - Definitions of Corrosion - Overall classification of types of corrosion-Basic electrochemistry – Galvanic and electrolytic cells – Potential measurements - EMF and Galvanic series – Galvanic corrosion and bimetallic contacts – Eh – pH diagrams – Electrode – solution interface – Electrode kinetics and polarization phenomena – Exchange current density – Polarization techniques to measure corrosion rates – Mixed potential theory – Activation and diffusion controlled mixed electrodes – Methods of corrosion prevention and control – Design, coatings and inhibition – Cathodic protection – Stray current corrosion – Passivity phenomena and development of corrosion resistant alloys – Anodic control – Biological aspects of corrosion – Microbially induced corrosion (MIC) - Principles, Types, environments and microbiology – Biofilms – Corrosion by aerobic and anaerobic bacteria – Depolarization theory – Case studies- Biofouling of titanium in s e a water – Failure analyses – prevention of MIC – Corrosion of medical implants – Biocorrosion of concrete – Metallurgical factors influencing corrosion – Laboratory experiments in corrosion engineering.

NPTEL

http://nptel.iitm.ac.in

Metallurgy and Material Science

Pre-requisites:

- 1. Basic knowledge of physical chemistry, electrochemistry and colloidal science.
- 2. Basic understanding of metallurgical and materials engineering principles.
- 3. Basic biology concepts.

Coordinators:

Prof. K.A. Natarajan Department of Materials EngineeringIISc Bangalore

COURSE DETAIL

Module	SI. No. and topic	Hours	
Module 1	 Electrochemistry of corrosion Lecture 1: Corrosion – introduction, definitions and types Lecture 2: Electrochemical cells-definitions and principles Lecture 3: Potential measurements - galvanic cells, concentration cells. Lecture 4: EMF and Galvanic series - bimetallic couples. Lecture 5: Eh-pH diagrams – fundamental aspects. Lecture 6: Construction of Eh – pH diagrams. Fe-H2O-O2 diagram. Lecture 7: Copper, Aluminium and general corrosion diagrams. 	7	C F E E
Module 2	 Electrode kinetics and polarization phenomena Lecture 8: Electrode – solution interface – definition and types of polarization. Lecture 9: Exchange current density – polarization relationships. Lecture 10: Polarization techniques – corrosion rate determination. Lecture 11: Mixed potentials – concepts and Basics. Lecture 12: Mixed potential theory – bimetallic couples Lecture 13: Mixed potential theory – activation and diffusion controlled processes 	6	

Module 4 Biological aspects of corrosion 14 • Lecture 24: Microbially influenced corrosion (MIC) - definitions, environments and microbiology. 14 • Lecture 25: MIC - Electrochemical aspects and general mechanisms. • Lecture 26: MIC - Bacterial transport, attachment and affected materials. 14 • Lecture 27: MIC - Role of aerobic and anaerobic microorganisms • Lecture 27: MIC - Role of aerobic and anaerobic 14	 Lecture 24: Microbially influenced corrosion (MIC) definitions, environments and microbiology. Lecture 25: MIC - Electrochemical aspects and general mechanisms. Lecture 26: MIC – Bacterial transport, attachment and affected materials. Lecture 27: MIC - Role of aerobic and anaerobic microorganisms 		 Lecture 29: MIC and Biofilms. Lecture 30: MIC – case studies and mechanisms. Lecture 31: Biofouling of Titanium – biofilm 	
Module 4 Biological aspects of corrosion 14 • Lecture 24: Microbially influenced corrosion (MIC) – definitions, environments and microbiology. 14 • Lecture 25: MIC - Electrochemical aspects and general mechanisms. • Lecture 26: MIC – Bacterial transport, attachment and affected materials. 14	potential theory. • Lecture 22: Passivity – design of corrosion resistant alloys. • Lecture 23: Anodic protection. • Lecture 23: Anodic protection. Module 4 Biological aspects of corrosion • Lecture 24: Microbially influenced corrosion (MIC) 14 • Lecture 25: MIC - Electrochemical aspects and general mechanisms. • Lecture 26: MIC – Bacterial transport, attachment and affected materials.		 microorganisms Lecture 28: Mechanisms and models for SRB corrosion. Lecture 29: MIC and Biofilms. Lecture 30: MIC – case studies and 	
Module 4 Biological aspects of corrosion 14 • Lecture 24: Microbially influenced corrosion (MIC) – definitions, environments and microbiology. 14	potential theory. • Lecture 22: Passivity – design of corrosion resistant alloys. • Lecture 23: Anodic protection. • Lecture 23: Anodic protection. Module 4 Biological aspects of corrosion • Lecture 24: Microbially influenced corrosion (MIC) – definitions, environments and microbiology. 14		 general mechanisms. Lecture 26: MIC – Bacterial transport, attachment and affected materials. Lecture 27: MIC - Role of aerobic and anaerobic 	
	 potential theory. Lecture 22: Passivity – design of corrosion resistant alloys. 	Module 4	 Lecture 24: Microbially influenced corrosion (MIC) definitions, environments and microbiology. Lecture 25: MIC - Electrochemical aspects and 	14
	potential theory.		Lecture 23: Anodic protection.	14
 Lecture 19: Stray current corrosion. Lecture 20: Passivity – definitions and influencing parameters 	protection.		 Lecture 17: Cathodic protection – influencing factors and monitoring. Lecture 18: Design aspects for cathodic 	
 Lecture 17: Cathodic protection – influencing factors and monitoring. Lecture 18: Design aspects for cathodic protection. Lecture 19: Stray current corrosion. Lecture 20: Passivity – definitions and influencing 	 Lecture 17: Cathodic protection – influencing factors and monitoring. Lecture 18: Design aspects for cathodic 		 coatings. Lecture 15: Prevention strategies – inhibitors and surface engineering. Lecture 16: Cathodic protection – principles and classification. 	

References:

- Denny A Jones, Principles and Prevention of Corrosion (second edition), Prentice-Hall, N. J. (1996).
- M. G. Fontana, Corrosion Engineering (Third Edition) McGraw-Hill Book Company

(NY) (1987).

- H. H. Uhlig and R. W. Revie, Corrosion and Corrosion Control, Wiley (NY) (1985).
- L. L. Shreir, Corrosion. Vol I and II, Butterworths, Kent (1976).
- M.Pourbaix, Atlas of Electrochemical Equilibria in aqueous solutions, NACE, Houston (1974).
- J. O. M. Bockris and A. K. N Reddy, Modern Electrochemistry. Vol. I and II, Plenum Press (NY) (1970).
- J. D. A Miller, Microbial Aspects of Metallurgy, Medical and Tech. Pub. Co. Lancaster (1971).
- C.A.C. Sequeira, Microbial Corrosion, European Federation of Corrosion, Maney Pub. (2000).
- B. J. Little, Microbiologically Influenced corrosion, Wiley-Intersciene (2007)
- H. Videla, J. F. Wilkes, R. A. Silva, Manual of Biocorrosion, CRC Press (1996).
- S.W. Borenstein, Microbiologically influenced corrosion handbook, Woodhead Pub. Ltd, Cambridge (1994).
- From computer Web-downloads on various topics.
- R.W.Staehle, Fundamental Aspects of Corrosion of Metals in Aqueous Environments, Special lecture series on the fundamentals of corrosion, Univ. of Minnesota (USA), 1968.

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in