Micro and Smart Systems - Video course

COURSE OUTLINE

This interdisciplinary course not only gives an overview of the micro and smart systems technologies but also gives an in-depth understanding of the issues involved. It begins by answering the important question: why miniaturize? This is followed by a quick summary of a variety of sensors, actuators, and systems.

It then presents a comprehensive description of microfabrication. This is followed by a detailed discussion of mechanics of solids as it pertains to micro and smart systems.

While this part may be viewed as strength of materials and design, an effort is made to relate this to micro devices and discuss such topics as residual stress and stress gradients, lumped modeling using energy methods, anticlastic curvature, etc.

The discussion ends with general equations of elasticity and their solution is discussed next using the finite element method. Here, too the basics and advanced topics are interleaved to provide a thorough understanding of the finite element method. After this, electronics circuits, control, and packaging are also presented.

COURSE DETAIL

Lecture No.	Торіс	
	Module 1: Introduction	
1.	Glimpses of Microsystems; scaling effects	
2.	Smart materials and systems: an overview	
3.	Microsensors: some examples	
4.	Microactuators: some examples	
5.	Microsystems: some examples	
6.	Examples of smart systems: structural health monitoring and vibration control	
	Module 2: Microfabrication processes	
7.	Structure of silicon and other materials	
8.	Silicon wafer processing; Thin-film deposition	

NPTEL http://nptel.iitm.ac.in

Mechanical Engineering

Pre-requisites:

• Multi-variable calculus.

Additional Reading:

- 1. G.T.A. Kovacs, Micromachined Transducers Sourcebook, WCB McGraw-Hill, 1998.
- 2. J.W. Gardner, Microsensors: principles and applications, John Wiley & Sons, 1994.
- 3. M. Madou, Principles of Microfabrication, CRC Press, 1998.

Hyperlinks:

- About MEMS and Nanotechnology: <u>http://www.memsnet.org/mems/</u>
- Analog Devices: <u>http://www.analog.com/en/mems-andsensors/products/index.html</u>
- MICROSYSTEM DESIGN: <u>http://web.mit.edu/microsystem-</u> <u>design/www/</u>

Coordinators:

Dr. K.J. Vinoy Department of Electrical Communication EngineeringIISc Bangalore

Prof. G.K. Anathasuresh Department of Mechanical EngineeringIISc Bangalore

Prof. K.N. Bhat Department of Electrical Communication EngineeringIISc Bangalore

Prof. S. Gopalakrishnan

		Department of Aerospace
9.	Lithography, wet etching and dry etching	EngineeringIISc Bangalore
10.	Bulk micromachining and Surface micromachining	
11.	Wafer-bonding; LIGA and other moulding techniques	
12.	Soft lithography and polymer processing	
13.	Thick-film processing; Low temperature co-fired ceramic processing	
14.	Smart material processing	
	Module 3: Mechanics of Solids	
15.	Stresses and deformation: bars and beams	
16.	Microdevice suspensions: lumped modeling	
17.	Residual stress and stress gradients	
18.	Poisson effect; Anticlastic curvature; examples of micromechanical structures	
19.	Thermal loading; bimorph effect	
20.	Dealing with large displacements; in-plane and 3D elasticity equations	
21.	Vibrations of bars and beams	
22.	Gyroscopic effect	
23.	Frequency response; damping; quality factor	
24.	Basic micro-flows for damping calculation	
	Module 4: Finite element method	
25.	Types of numerical methods for solving partial differential equations	
26.	What is finite element method? Variational principles	

27.	Weak form; shape functions	
28.	Isoparametric formulation and numerical integration	
29.	Implementation of the finite element method	
30.	FEM for piezoelectrics	
	Module 5: Electronics and packaging	
31.	Semiconductor devices: basics	
32.	OpAms and OpAmp circuits	
33.	Signal conditioning for microsystems devices	
34.	Control and microsystems	
35.	Vibration control of a beam	
36.	Integration of microsystems and microelectronics	
37.	Packaging of Microsystems: why and how	
38.	Flip-chip, ballgrid, etc.; reliability	
39.	Case-study 1 (Pressure sensor)	
40.	Case-study 2 (Accelerometer)	

References:

- 1. S.D. Senturia, Microsustem Design, Kluwer Academic Publishers, 2001.
- 2. Tai-Ran Hsu, MEMS & Microsystems Design and Manufacture, McGraw Hill, 2002.
- 3. V.K. Varadan, K.J. Vinoy, and S. Gopalakrishnan, Smart Material Systems and MEMS: Design and Development Methodologies, Wiley, 2006.

A joint venture by IISc and IITs, funded by MHRD, Govt of India