Computational Heat Transfer and Fluid Flow - Web course

COURSE OUTLINE

- Mathematical description of fluid flow and heat transfer: conservation equations for mass, momentum, energy and chemical species, classification of partial differential equations, coordinate systems.
- Discretisation techniques using finite difference methods: Taylor-Series and control volume formulations; modelling of heat conduction, convection-diffusion, and flow field using finite volume method (FVM); introduction to FVM with unstructured grids; modelling of phase change problems; introduction to turbulence modelling; application to practical problems.

COURSE DETAIL

	Module	Sub-Modules	Hours per topic	Total Hours
1. Ir	ntroduction	Basics of heat transfer, fluid flow. Mathematical description of fluid flow and heat 5 transfer: conservation equations for mass, momentum, energy and chemical species, classification of partial differential equations, coordinate systems.	3 2	5
	Discretization Inniques	 Discretisation techniques using finite difference methods: Taylor-Series and control volume formulations. Finite element discretization techniques. 	2	4
diffu prol finit	Modelling of usion blems using e volume thod	 One dimensional steady state diffusion problems; discretization technique. Solution methodology for linear and non-linear problems: Point-by-point iteration, TDMA. Two and three dimensional discretization. Discretization of unsteady diffusion problems: Explicit, 	2 1 2	5

NPTEL

http://nptel.iitm.ac.in

Mechanical Engineering

Pre-requisites:

- Mathematics background (PDE, Linear Algebra).
- Fluid mechanics, heat transfer, thermodynamics.
- Programming language (C, FORTRAN 90).

Additional Reading:

- 1. S. R. Mathur and J. Y. Murthy, "A Pressure- Based Method for Unstructured Meshes", Numerical Heat Transfer, Part B, Vol. 31, pp. 195-215, 1997.
- 2. W. J. Minkowycz, E. M. Sparrow, J. Y. Murthy, "Handbook of Numerical Heat Transfer," Second Edition, John Wiley and Sons, 2006.

Hyperlinks:

- CFD Flow Modeling Software & Solutions from Fluent: http://www.fluent.com
- 2. Flomerics Group PLC Mentor Graphics: http://www.flomerics.com/
- 3. Software AEAT: http://www.software.aeat.com/cfx
- 4. CHAM and PHOENICS: http://www.cham.co.uk/
- 5. CFD Research Corporation: http://www.cfdrc.com
- 6. Automated Flow, Thermal, and Stress Simulation Software and Services for CFD and CAE Solutions:

	impilcit and Crank-ואוכסוson's algorithm; stability of solutions.		
4. Modelling of Convection- Diffusion	 One dimensional convection- diffusion problem: Central difference scheme. 	2	5
Problems	Discretization based on analytical approach (exponential scheme).	1	
	 Hybrid and power law discretization techniqies. 	1	
	 Higher order schemes (QUICK algorithm). 	1	
5. Flow modelling	 Discretization of incompressible flow equations. 	3	5
	Pressure based algorithm: SIMPLE, SIMPLER etc.	2	
6. Unstructured grids	Introduction to FVM with unstructured grids.	2	2
7. Multiphase problems	 Modelling of multiphase problems: enthalpy method, volume of fluid (VOF) and Level Set Methods. 	1	4
8. Introduction to turbulence	Large Eddy Simulation (LES).	2	4
modeling	Direct Numerical Simulation (DNS).	1	
9. Projects / Exercises	Solving simplified problems: formulation, discretization with coarse grids, applying appropriate boundary and initial conditions and solving by hand calculations.	4	8
	 Solving practical problems through software: writing user sub-routines; post-processing and interpretation of results. 	6	

References:

- 1. S. V. Patankar, "Numerical Heat Transfer and Fluid Flow," Hemisphere Publishing Corporation, 1980.
- 2. D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, "Computational Fluid Mechanics and Heat Transfer," Hemisphere Publishing Corporation, 1984.
- 3. J. H. Ferziger and M. Peric, "Computational Methods for Fluid Dynamics", Second Edition, Springer, Berlin, 1999.
- 4. H. K. Versteeg and W. Malalasekera, "An Introduction to Computational Fluid Dynamics: The Finite Volume Method",

- http://www.cd-adapco.com
- 7. ANSYS, Inc. corporate: http://www.ansys.com/
- 8. ANSYS Products Portfolio: http://www.fluent.com/software/fidap/
- TileFlow, MacroFlow, MeltFlow | Innovative Research: http://www.inres.com
- 10. ANSYS Icepak: http://www.icepak.com

Coordinators:

Prof. Pradip Dutta

Department of Mechanical EngineeringIISc Bangalore

Longman Scientific & Technical, 1995.

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in