Refrigeration and Air Conditioning - Video course

MODULE 1: Introduction

1st Lecture **Definition of Refrigeration and Air Conditioning** History of Refrigeration and Air conditioning History from conceptual point of view: · Ice production by nocturnal cooling in ancient India and application of evaporative cooling in India. Use of natural ice, ice houses and ice trade. Vapour Compression Refrigeration Systems Vapour Absorption Refrigeration Systems Air Cycle Refrigeration Systems • Miscellaneous Systems (Vapour Jet Refrigeration Systems, Thermoelectric systems, Vortex tube systems, Intermittent-Solar Refrigeration Systems, Combined Cycles) 2nd Lecture **History from Refrigerant development Point of View** • Early refrigerants (SO2, CO2, CH3Cl, CH4, C2H6 etc) Introduction of CFCs and HCFCs Ozone layer depletion • HFCs, HCs, NH3, CO2, H2O etc. History from compressor development point of view Low-speed steam engine driven compressors High-speed electric motor driven compressors Rotary vane compressors • Centrifugal compressors Screw compressors Scroll compressors **History of Air Conditioning MODULE 2: Applications** 3rd Lecture Applications of Refrigeration and Air Conditioning a) Comfort Air Conditioning Residential air conditioning Commercial air conditioning Industrial air conditioning b) Industrial Refrigeration Chemical and process industries Dairy plants • Petroleum refineries c) Food processing and food chain b) Miscellanous

MODULE 3: Methods of producing low temperatures

4th Lecture

Applications of Refrigeration and Air Conditioning

NPTEL http://nptel.ac.in

Mechanical Engineering

Coordinators:

Prof. M. Ramgopal Department of Mechanical EngineeringIIT Kharagpur

Prof. R.C. Arora

Department of Mechanical EngineeringIIT Kharagpur

- Using enthalpy of mixing (mixing of salt with water)
- Expansion in a turbine
- Throttling
- Thermoelectric effects
- Adiabatic demagnetization

MODULE 4: Review of Fundamentals

5th Lecture

a) Thermodynamics:

1st law of thermodynamics for open and closed systems

• 2nd law of thermodynamics, Kelvin-Planck and Clausius statements, and

- Clausius inequality. 3rd law of thermodynamics.
- Heat Engines, Heat Pumps and Refrigeration Systems, Maximum COP
 - Thermodynamic properties
 - Thermodynamic processes
 - T-s and p-h diagrams

6th Lecture

a) Fluid Mechanics:

- Continuity and Momentum equations
- Bernoulli's equation and friction factor
- b) Heat Transfer:
 - Modes of heat transfer
- Concept of thermal resistance and overall heat transfer
- coefficient
 - Radiative heat transfer coefficient
 - Forced Convection, Free Convection, Boiling and
- Condensation heat
 - transfer coefficients

MODULE 5: Air Cycle Refrigeration Systems

<u>7th Lecture</u>

- Reverse Carnot Cycle and its limitations
- Bell Coleman, Joule or Reverse Brayton Cycle
- Aircraft refrigeration cycles
- Joule Thompson coefficient and Inversion Temperature
- Linde, Claude and Stirling cycles for liquefaction of air.

MODULE 6: Vapour Compression Refrigeration Systems 8th Lecture

• Comparison of Vapour Compression Cycle and Gas cycle

• Ideal refrigeration cycle – Reversed Carnot cycle and maximum COP

Deviations of practical cycles from Carnot cycle

• Standard vapour compression refrigeration cycle (SSS cycle),

Superheat horn and throttling loss for various refrigerants, efficiency

9th Lecture

 \bullet Modifications to standard cycle – liquid-suction heat exchangers

- Grindlay cycle and Lorenz cycle
- Optimum suction condition for optimum COP Ewing's
- construction and Gosney's method.
 - Actual cycles with pressure drops and heat transfer
 - Complete Vapour Compression Refrigeration System

10th Lecture

• Multipressure, multistage systems, optimum intermediate pressure

Two stage ammonia and halocarbon systems

11th Lecture

- Multi-evaporator systems
- Cascade systems, optimum intermediate temperature

Manufacture of dry ice and supercritical CO2 cycle Autocascade cycle MODULE 7: Vapour Absorption Refrigeration Systems 12th Lecture • Working principle Maximum COP of the ideal VARS Properties of Mixtures Simple absorption refrigeration system 13th Lecture Lithium bromide-Water Absorption Refrigeration **Systems** Operating principles and applications • Refrigerant-absorbent properties using tables and charts Performance evaluation and methods of improvement Practical problems – crystallization and air leakage Commercial systems – Single and multistage systems 14th Lecture Aqua – Ammonia Refrigeration System Operating principles and applications Refrigerant-absorbent properties using tables and charts Practical problems and Principle of Rectification 15th Lecture Aqua-ammonia Absorption Refrigeration Systems • Analysis of Generator- Exhausting Column and Rectification column -Dephelgmator Three fluid system Solar energy based adsorption refrigeration systems **MODULE 8: Refrigeration system components** 16th Lecture Compressors **Reciprocating Compressors** • Constructional details - open , hermetic and semi-sealed compressors Performance of the ideal compressor Clearance volumetric efficiency Effects of evaporator and condenser pressures Actual volumetric efficiency Effects of cylinder cooling, heating and friction Empircial equations for actual volumetric efficiency 17th Lecture **Reciprocating Compressors (contd)** Power requirements of ideal and actual compressors optimum work for given condenser and evaporator pressures, mean effective pressure, pull down characteristics Compressor discharge temperatures and need for cooling Capacity control 18th Lecture **Centrifugal Compressors** Basic principle of dynamic compressor Velocity diagrams • Efficiency considerations Construction details, applications and performance characteristics Comparison with reciprocating compressors

19th Lecture

Screw compressors

- Basic principles- single screw and double screw compressors.
- Working principle, work requirement and performance characteristics
- Comparison with reciprocating and centrifugal compressors
- Rotary- single vane and multi-vane compressor

20th Lecture

Condensers

• Classification based on type of construction, flow direction etc.

- Condensing capacity and Heat Rejection Ratio
- Correlations for condensing heat transfer coefficients
- Thermal design of condensers
- Effects of fouling and noncondensible gases on performance

Lecture

Evaporators

- $\ensuremath{\cdot}$ Classification based on type of construction, flow direction etc.
- Correlations for boiling heat transfer coefficients for various configurations
- Design and performance aspects
- Effects of pressure drops and frost formation

Use of Wilson's plots

22nd Lecture

Expansion devices

Capillary tubes

- Applications, operating characteristics and selection
- Thermostatic expansion valves
- Applications and operating characteristics
- Internal vs external equalizers
- Cross charging, gas charging, liquid charging and fade out point

Automatic expansion valves

Float valves – Low side and high side float valves Electronic expansion valves

MODULE 9: Refrigerants

23rd Lecture

- Primary and secondary refrigerants
- Designation of Refrigerants.
- \bullet Desirable properties of refrigerants including solubility in water and

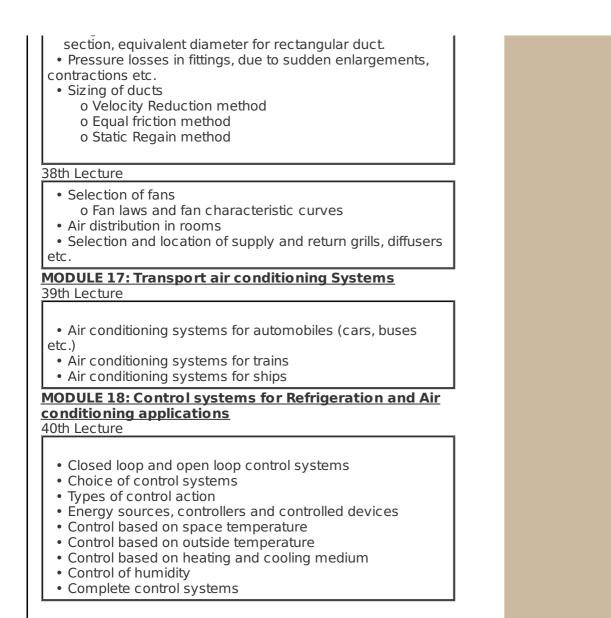
lubricating oil, material compatibility, toxicity, flammability, leak detection,

- cost, environment and performance issues
- Thermodynamic properties of refrigerants
- Synthetic and natural refrigerants

• Comparison between different refrigerants vis a vis applications

- Special issues and practical implications
- Refrigerant mixtures zeotropic and azeotropic mixtures

MODULE 10: Properties of moist air (psychrometry) 24th Lecture


- Composition of moist air
- Methods for estimating moist air properties

• Imp	portant psychrometric properties
	Dry bulb temperature
	Humidity ratio
	Relative humidity Degree of saturation
	Dew point temperature
	Enthalpy
25th L	ecture
	hrometry (contd.)
	Adiabatic saturation
0	Thermodynamic wet bulb temperature and wet bulb
-	nometer
	ions between psychrometric properties
	duction to humidity ratio vs. dry-bulb temperature hrometric chart and ASHRAE chart.Use of psychrometric
	s and moist air tables, Goff and Gratch tables
	JLE 11: Psychrometric Processes
	ecture
• Ser	nsible cooling and heating, RSH
	midification and dehumidification, RLH
	mbined heat and mass transfer processes, RTH, RSHF,
	o Straight line law – coil bypass factor and ADP o Cooling and dehumidification
	b Heating and humidification
	Psychrometric calculations for simple airconditioning
syste	em and for
ESHF	return air systems with bypass factor. RSHF, GSHF and
	ecture
	hrometric processes (contd.)
	oling and humidification (evaporative cooling) abatic mixing
	ay washers and cooling towers
	JLE 12: Air conditioning systems for comfort
	ecture
• The	ermal comfort. Heat transfer from human body by
	ible and latent heat transfer. Metabolic heat generation, ly state and unsteady state model for heat transfer,
	t of clothing and definition of effective temperatures.
	and PPD. ASHRAE comfort chart.
	ide and Outside design conditions
	nmer air conditioning systems
	nter air conditioning systems year air conditioning systems
	JLE 13: Infiltration and IAQ .ecture
	ration
	Itration and ventilation
o Infil	tration due to stack effect, temperature difference and
	velocity
o Air	change and crack length methods for estimating
	Itration due to door openings
	or Air Quality (IAQ)
	urces of indoor air pollution
	thods of control of IAQ sh air requirements for ventilation and IAQ
	JLE 14: Heating and Cooling load calculations .ecture

Heating and Cooling load calculations

• Differences between winter and summer load calculations

 Solar radiation Distribution of solar radiation 	
o Direct and diffuse solar radiation	
o Earth sun angles and their relationship	
31st Lecture	
 Solar radiation (contd.) Solar radiation on horizontal, vertical and inclined surfaces 	
o Solar radiation through glass, SHGF and shading coefficients	
o Effects of internal and external shading devices	
32nd Lecture	
 Heat transfer through building structure Thermal resistance of various building materials Periodic heat transfer through walls and roof o Governing equations o Methods of solution o Decrement factor and Time lag method o Equivalent Temperature difference Method 	
33rd Lecture	
 Winter heating load calculations Heat losses through the structure Heat losses due to infiltration Effects of solar radiation and internal heat sources on heating loads Degree day and BIN methods for estimating energy requirements for heating 	
24th Lecture	
 Summer cooling load calculations Heat gain through walls and roof Heat gain through glazings o Cooling Load Factors (CLF) Heat gain through doors, floor, partition etc. Internal heat gains Infiltration and ventilation heat gains System heat gains (ducts, fans, blowers etc) 	
35th Lecture	
Fixing of supply air conditions for summer air conditioning	
o Supply air temperatures and air quantity, RSHF	
o Outdoor air quantity o Bypass factor and coil condition line o Cooling load on the room and cooling load on the c GSHF	oil,
o High latent heat load applications o Use of reheat coils	
MODULE 15: Air conditioning Systems	
36th Lecture	
a) All air systems b) All water systems	
c) Air water systems	
d) Unitary systems • Window air conditioners	
MODULE 16: Fan and Duct Systems	
37th Lecture	
• Frictional pressure drops in straight ducts of circular a rectangular cross-	and

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.ac.in