Mechanical Vibrations -Video course

SN	Modules	Lectures	Lecture Contents	Remarks	
1	l. Introduction	i	Overview of the course, practical applications and research trends	RT-01	
2	Indoddedon	ii	Harmonic and periodic motions, vibration terminology	RT-02	
З	ll. Single-DOF Free	i	Vibration model, i Equation of motion- Natural Frequency		
4		ngle-DOF ii Energy method, Free ii Rayleigh method		RT-04	
5	Vibrations	iii	Principle of virtual work, Damping models.	RT-05	
6	III. Single-DOF Free	i	Viscously damped free vibration	RT-06	
7		ii	Special cases: oscillatory, non- oscillatory and critically damped motions.	RT-07	
8	Vibrations	iii	Logarithmic decrement, Experimental determination of damping coefficient.	RT-08	
9	III. Single-DOF Free Vibrations	i	Forced harmonic vibration, Magnification factor.	RT-09	
10		ii	Rotor unbalance, Transmissibility	RT-10	
11		iii	Vibration Isolation	RT-11	
12		iv	Equivalent viscous damping, Sharpness of resonance.	RT-12	
13	IV.	i	Generalized and Principal coordinates, derivation of equations of motion	SKD-01	
14	Two-DOF Free	ii	Lagrange's equation	SKD-02	
15	Vibrations	iii	Coordinate coupling	SKD-03	

Mechanical Engineering

Coordinators:

Prof. Rajiv Tiwari Department of Mechanical EngineeringIIT Guwahati

Prof. S.K. Dwivedy Department of Mechanical EngineeringIIT Guwahati

16		iv	Forced Harmonic vibration	SKD-04
17	V. Vibration	i	Tuned absorber, determination of mass ratio.	SKD-05
18	Absorber	ii	Tuned and damped absorber, unturned viscous damper.	SKD-06
19		i	Derivation of equations of motion, influence coefficient method	SKD-07
20	VI. Multi-DOF	ii	Properties of vibrating systems: flexibility and stiffness matrices, reciprocity theorem	SKD-08
21		iii	Modal analysis: undamped	SKD-09
22		iv	Modal analysis: damped	SKD-10

RT: Rajiv Tiwari

SKD:Santosh Kumar

SN	Modules	Lectures	Lecture Contents	Remarks	
23		i	Rayleigh method	SKD-11	
24	VII. Calculation of natural frequencies	ii	Stodala method	SKD-12	
25		iii	Matrix iteration method	SKD-13	
26		iv	Holzer method and Dunkerley's method	SKD-14	
27	VIII. Torsional vibration	i Simple systems with one or two rotor masses		RT-13	
28		Torsional ii transfer matrix		RT-14	
29		iii	Geared system	RT-15	
30		iv	Branched system	RT-16	
31		i	Vibration of strings	SKD-15	
32	IX. Continuous systems : closed form solutions	ii	Longitudinal and torsional vibration of rods	SKD-16	
33		iii	Transverse vibration of beams: equations of motion and boundary conditions	SKD-17	
34		iv	Transverse vibration of beams: natural frequencies and mode shapes	SKD-18	
35	Х.	i	Rayleigh's energy method	SKD-19	

36	systems :	ii	кауleign-кitz method	SKD-20	
37	Approximate solutions	iii	Assumed modes and Galerkin's method	SKD-21	
38	XI. Finite element analysis	i	Finite element formulation for beams: Galerkin's method	RT-17	
39		ii	Beams elemental mass and stiffness matrices, Elemental force vector,	RT-18	
40		iii	Global finite element assembly and imposition of boundary conditions and solution procedure.	RT-19	
41		iv	Finite element formulation for rods.	RT-20	
42	XI.	i	Vibration testing equipments: signal generation, measuring and conditioning instruments	RT-21	
43	Signature analysis and preventive maintenance	ii	Vibration testing equipments: signal analysis instruments	RT-22	
44	1	iii	Vibration signatures and standards	RT-23	
45]	iv	Field balancing of rotors	RT-24	